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Asymptotics of the Eigenvalues and Eigenfunctions of a
Non-Self-Adjoint Problem with a Spectral Parameter in
the Boundary Condition

T.F. Kasimov

Abstract. In this paper we consider the nonself-adjoint spectral problem
-y +al@)y =Xy, 0<z<1,
with nonseparated boundary conditions

y(0) =0, ¢ (0)=(aA+D)y(1),

where X is a spectral parameter, ¢(z) is arbitrary complex-valued summable function, a and b are
complex numbers (a #0). Asymptotic formulas are obtained for the eigenvalues and eigenfunctions
of the considered spectral problem with indication of several subsequent terms of the asymptotics.
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Acumnororuka CobcrBennbix 3HadeHuii m CoOCTBEHHBIX
Oynukiumit Ogaoit Hecamocomnpsizkennoii 3agaun co Criek-
TpajgbHbIiM llapamerpoMm B KpaeBoMm ¥YcioBumn

Taceivos T.O.

Annoranusi. B pabore paccmarpuBaercst CekTpajibHas 3a0a9a

_yI/+Q(m)y:>‘y7 T € (0’1)7
y(0)=0, ¥ (0)=(ar+b)y(1),

rJle  A—CHeKTPAJbHBIH Tapamerp, ¢ () —KOMIUIEKCHO3HAYHas CcyMMupyemast GYHKIUSA, a u
b—upoussosiblble KoMiyiekcHbie yncia (a # 0). [onydennr acuMmnroruueckue GpopMyibl Ajisi co0-
CTBEHHBIX 3HAYCHUI ¥ COOCTBEHHBIX (PYHKIIHH PACCMATPUBAEMON CIEKTPATLHON 3a1a4m.

Kuarouesbie ciioBa: CrnekrpasibHast 3aa4a, COOCTBEHHBIE 3HAYEHUS, COOCTBEHHBIE (DyHKIMN

2010 Mathematics Subject Classifications: 34B04, 34B09, 34B24

1. Beegenune

PaccymoTpum cremyromyio cieKTpadbHYIO 33a9y:
-y +q@)y=xy, x€(0,1) (1)

y(0) =0,
y (0) = (aA+ )y (1), } @)

rje A—CHeKTpaibHblil napamerp, ¢ () —KOMILIEKCHO3HAYHAs CyMMupyeMast (DYHKIUs, @ 1
b— mpousBosbHBIE KOMILTEKCHBIE Yncaa (a 7 0).

Hauma niesie B Hacrosimeit pabore noIydnTh aCUMIITOTHYeCKE (POPMYJIbI 171 COOCTBEH-
HBIX 3HAUYCHU U COOCTBEHHBIX DYHKIMI ceKTpaibHoit 3amauu (1), (2). Ilosryuennsie 3mech
GOPMYJIBI MOTYT OBITH UCIIOIB30BAHBI JIJIST UCCJIETOBAHNS HA3UCHBIX CBOUCTB COOCTBEHHBIX
dbyHKIHMI B pa3aindHbIX (DYHKIMOHAIBHBIX MPOCTPAHCTBAX, a TAKYKE B BOIIPOCAX PABHO-
MEpHOI u abCOTIOTHON CXOIMMOCTH, U CXOIUMOCTHA B TOUYKe OMOPTOTOHAJIBHBIX PAa3JIO¥Ke-
Huii GYHKIMHE M0 COOCTBEHHBIM (DYHKIUAM CIEKTPAIBLHON 33aun. DTUM BOIPOCaM OyJer
[OCBAIIIeHa OT/eIbHast paboTa.
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CrnekrpaJibHbIM 3aja4daM JJisd OOLIKHOBEHHBIX Ju(ddepeHuaibHbIX OIepPaTOPOB CO
CIIEKTPAJBHBIM MTAPaMeTPOM B MPAHUYHBIX YCJIOBUSX MOCBSIIIEHBl MHOTOYHCIEHHBIE Pabo-
Thl. (cM. Hanpumep, [1-14| u nmetommecs Tam 6ubamnorpadwuro.) M3 nocieannx ormernm
paborsr [15-24]. Hemocpencrsentoe oTHomenne K Haimeit pabore umeor pabotsr [8,9,14],
HO Mbl paccmarpuBaem 6osiee obmuii ciaydvaii, uem B 3Tux paborax. B [8,9] paccmorpen
ciyqait ¢ (z) =0, b= 0, a B [14]| npu gomoaauTeIbHOM Ipeonoxkennn ¢ (x) = ¢ (1 — x)
paccMorpen caygait b = 0.

2. AcuMOTOTHKa COOCTBEHHBIX 3HAadeHWil creKTpanabHOR 3ama4dn (1), (2)
Ipmvaem A = p? u gepes y (v, p) 0603HAUNM pelTeHEe ypaBHEHH
" +q(x)y=p’y,  xe€(0,1) (3)
YA0BJIETBOPAIOIIECE HAYAJIbHBIM yCJIOBUAM
y(0)=0, ¥ (0)=p (4)
Nsgecrno, garo (cMm. [25, crp.16]) dyskmus y (x, p) yHA0OBJIETBOPSIET TAKXKE MHTEIPATILHOMY
YPABHEHUIO

y(e) =sinpr-t < [ a®yp)sinp (o1 d (5)

[Iponuddepentupys (5) mo x, moxyanm

x
 (2,p) = peos pr + / 4 (0)y (¢, p) cos p (z — 1) dt (6)
Vcrnonb3yst n3BecTHbIE HEPABEHCTBA
Isin z| < el Jcos 2| < el™Z1, (7)
U3 (5) momyauM CIeAyroILy o ONeHKY 11 y (&, p) Iph GOIBINNX 3HAYEHUSX |p|:

olTmplz
]

U3 (7) u (8), B acTHOCTH, CJIELyeT OIEHKaA

y(z,p) =sinpr+0 ( > ;Y (x,p) = pcospr + O (eump‘x> ' (8)

y(@,p) = O (elmel) ©)

Onnako Ham monamobuTest 6ostee TouHas oneHka dyHKuuu y (z, p) no mapamerpy p. st
storo sarmmimem (5) ang y (¢, p) u noacraBuM ee BeIpaxKerne B (5)
Torma mosyauM, COOTBETCTBEHHO

u (6) 110/ HHTErpaAIOM.

y(z,p) =Sinpfv+;/0IQ(t) <Sinpt+2;/th(T)y(T,p)Sinp(t—T)dT>-
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1 x
-Sinp(x—t)dtzsinpx+/ q(t)sinpt-sinp(x —t) dt+
P Jo

"‘f)lQ/OIQ(t)/O q(T)y(r,p)sinp (t — 1) -sinp (x —t)drdt =

1 [* 1 [*
:sinpx—/ q(t)dt-cospm—i—/ q(t)cosp(x —2t)dt+
2p Jo 2p Jo

+/)12/qu@ (/Otm(r)y(w)smp(t—T>dr>> sin p (x — 1) dt.

Ananornuno,
T 1 t
y' (,p) ZpCOSpw+/ q(t) <Sinpt+ p/ q(T)y(r,p)sinp(t —7) dT) :
0 0
xr
ccosp(z—1t)dt = pcospm—k/ q (t)sinpt-cosp(x —t)dt+
0

[T (/thv)y(f,p)smp(t—r)dr) cos p(x — ) d =

x 1 €T
:pcospx—i—/ q(t)dt-sinpx—zf q (t)sinp (x — 2t) dt+
0 0

2 [a ([ mpsinp—ryr) -cospa—t) e

Tenepsb,c yuerem (7), (8), orcroma mosydnm

1 T 1 T [Imp|x
y(m,p):sinp:c—/ q(t)dt~cospa:+/ q(t)cosp(xz —2t)dt+0O 672 , (10)
2p Jo 2p Jo p]

1 [* 1 /= [Imp|x
y/(x,p)—pcospx—&—z/ q(t)dt-sinp:v—Q/ q(t)sinp (z —2t)dt+0O (e‘p) . (11)
0 0

CopaBemiBa Caeqyomnas

Teopema 2.1. Cobcmsennvie snaverus cnexmpasvroti sadavwy (1), (2) acumnmomuuecku
NPOCMbL U UMEOM ACUMNIMOTNUKY

_ 2 _
Ak = pi, 2de (k=0,1,2,...)

ar by 1
=mk+ —=+-24+0|-—= 12
pr =Tk + =5+ 5+ <k2> (12)
3dect 0603Ha"eH DL
1+ (—1)* B LAEe 1 /!
akzw, bk:()/ q (t) cos 2mktdt q:/ q(t)dt ..
aT 27T 0 2 0
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Jlokasamenvemeo. @yukms y (z, p) ynosaersopsier yenosuto y (0) = 0. TTorpebyem, uro-
661 oHa ynoBieTBopsiaa Takke ycaosuio y (0) = (aX +b) y (1), Te.

y' (0,p) = (ap® + )y (1,p). (13)

YauToiBas, 9To
y'(0,p) = p,

q 1 1 e\fmp\
y(l,p):sinp—cosp+/ q(t)cosp(l—2t)dt+O | — | .
p 20 Jo o]

TMopcrasngast 3tu Beipaskenus B (13), moayanm ciemyroniee ypaBHEHUS

~ (ap? np_ 4 1 _ elfmel
p=(ap”+0b) |sinp cosp + q(t)cosp(1—2t)dt+ O 5 .
p 2p Jo Pl

OTmernM, 9TO 9uCIO A = —g He MOXKeT OBITh COOCTBEHHBIM 3HaveHueM 3agaqdn (1), (2),
TaK KakK B 9TOM CJydae COOTBETCTBYIOIIee peleHue ypasHenus: (1) yaoBieTBopsier Hadab-
ubiv yeaosusM Y (0) = 0 u ¢/ (0) = 0, u nosromy ono tpusuanbho, T.e. ¥y (x) = 0. Torga
cobcrBennble 3HaueHus 3aa4un (1), (2) sBagoTcs KBagparamu Hyseil CIegyronero ypas-
HEHUsI:

(0 L oo - [Cqeosp(—2md+0 (Tt ) . (1)
p) =sinp — —cosp+/qtcosp 1—2t)dt + —s |-

ap® +b  p 2p Jo o2
Jlerko 3amernts, ¥ro upu [Imp| — oo  3C > 0:

5(p)| > Cel™.

[Tosromy BCe mysm dbynknuu 6 (p) pacnonoxkensr B HeKoTopoi mosoce [Imp| < h. Tpn
BelnosiHeHnn yesiosuii [Imp| < h u |p| — oo u3 (14), B gacTHOCTH TOJIyYIaeM

§(p) =sinp+0 (;) (15)

[Tpumensis Teopemy Pymre [26, ¢.425], noaydaeM, 9T0 TpH TOCTATOYHO GOJIBIINX |p| OKOJIO
KaxK 1010 Hy/Is QYHKIMHU sin p, T.e. p = Tk, PaCIOIOXKEH TOJBKO OiuH HysIb dyHKIuu 0 (p),
HO3TOMY [T HyJIel py dyHKIuU 6 (p) copaBe;TiBO COOTHOIIEHUE

pr = 7k + by,
rae 0 = O (%) Yrounum ouenky 0. [oacrasusia B (14) p = pg, nosyunm

a <WZiEO<,§f% oo (0 (5) - sy

15
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./Olq(t)cos <7rk+0 <]1€>> (1—-2t)dt+ O </<:12> _

1 (=Dfq¢ (=" /1 !

= — t 2rktdt + O .

— + — ok )y q (t) cos2m + 2
Torna
ap by 1
_ % bk L 1
rie
_q)EL g1 14 (=1)F
by = H/ q (t) cos2mktdt, —ap = 1+(-1)\ag (17)
o 0 am

({ak} orp., b, = 0(1))
OueBu/iHO, 9TO TOC/IEA0BATENBHOCTL {ay} orpanudeHa, a u3 reopembl Jlebera —Pumana
caenyer, 910 {bg} mMeer nopsanok by = o (1) mpu k — oo. O

3. AcumMmnroruka cobcTtBeHHBIX (DyHKIUII ciekTpanabHOi 3amauun (1), (2)

AcuMTTOTHKY COOCTBEHHBIX (DYHKIMN OyIeM HAXOANTH B JBYX MPUOIHKEHUIX: ¢ TOIHO-
crhio O (%) " TOIHOCTHIO O (k%) B Bomnpocax 6a3ucHOCTH JOCTATOYHO UMETh ACHMITOTHKY
¢ ocrtarkoM O (%)

Ouepnjiao, 9To cobcrBeHHbIME BYHKIUSME CleKTpaabHOil 3aga4un (1), (2) spisor-
cst yi () = y (x, pr), voe y (x, p) —pemienne ypaBaenust (3), yIOBIETBOPSIIONIEE YCIOBUSIM
(4). Tax xax y (x, pr) ynosrerBopsier Takxke ycaoButo (13), To oHa sBAgETCS COOCTBEHHO
dbyHKIIHEN, COOTBETCTBYOIIEH COOCTBEHHOMY 3HAYEHUID N\ = p%. CrenosaresnbHO, MO/I-
craByisiga B nepBoit opmyne (8) p = pi, umeem

. 1
yr () =y (z, pr) = sinppx + O <pk) —

:Smwo(;))m(m) ~sinr+0 1)

Takum 06pazom, j10Ka3aHO

Teopema 3.1. [aa cobecmeennbix Gynruul cnexmpaavnol sadawu (1), (2) cnpasediucy
ACUMNMOMUNECKUE POPMYALL

1
y(x) =sinwkx + O <k‘> ., k=0,1,2,.. (18)

OzHAKO B BOIPOCAX CXOIMMOCTH B TOYKE, & TaKyKe PABHOMEPHON CXOIUMOCTH OHOPTO-
TOHATBHBIX PA3JIOKEHUT 110 cobcTBeHHBIM byHKIMam 3agaun (1), (2) ayxHO nmeTh Gosee
TOYHbIE OIEHKH OCTATOYHOIO UJIEHA.

CrpaBeyinBa CIeayOIIas
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Teopema 3.2. Jlas cobemeennnr Gynruyut cnexmpasvnot sadawu (1), (2) enpasedausa
CACOYIOWASA YMOUHEHHAA ACUMNIMOMUKA

B ar by 1 r
yi () = sinmkz + < A + A ) x - cosTkx 5% (/ q(t) dt) cos mkx+

1 £ 1
+ﬂ ; q()coswk(z:—%)dt—i—O(kz) (19)
2de ay, u by onpedeaenv. dopmysamu (17).

Aoxasamenvcmeo. AcuMnToTuKy cobCTBeHHBIX QyHKIMI 6y1em naxoaut u3 (10), mogcras-
Jislsl TAM BMECTO p 3HadeHue py u3 (12).

1 * 1
Yk (x )—smpkx—/ t)dt- cospkaH—Q— q(t )Cospk($—2t)dt+0( > (20)
Pk Pk

IIpeBapuTenso HOﬂquM HEKOTOPBIE ACHMITTOTHYIECKTE OTIeHKH. Bee omenkn Oyaem mosry-
4garh ¢ ocratkom O ( = ) YunreiBast orieHky (16) st O, a Tak’Ke U3BECTHBIE COOTHOIIEHMNSI
sind =4§ 4+ O (53) ncosd =140 (52) mpu § — 0, MeeM CIeYIOMNe OTeHKN

sin ppx = sin (wk + 0 ) x = sinwkx - cos Opx + cos Tkx - sin Jpx =

1
=sinmkx (14 O (07)) + cos wkz (0pz + O (8})) = sin wkx + dxx - cos whx + O <k2>
cos prpx = cos (mk + 0 ) x = cos mkx - cos Opx — sin wkx - sin dx =

= coskz (1 +0 (5,%)) — sinkx (5;@ +0 (6}2)) = cosmkx — Opx - sinwkx + O <22>
sin py, (x — 2t) = coswk (v — 2t) — 0 (v — 2t) sin7k (x — 2t) + O (k:l?>

1 1 1 O 1 1
or  Tk+0, 7rk:<+0<k>> k+0<k3>

YuaureiBas Bce 9TH OneHKH B (20) u ymporasi mo/IyYeHHble BHIPAYKEHUS, TTOJTyIaeM CIpa-

BeBoCTEL opmysst (19). O

4. ConpskeHHasd CIEeKTpaJbHas 3a1a4a

HemocpencTtBenHO poOBEpsIeTCsT, ITO COMPSIKEHHAS 33092 UMEET BUI

"+ q(z)z=Xz, x€(0,1) (21)

{ ()=0
—l—(a)\—l—b) )=0
17



Yepes z (z, p) ()\ = p2) 0003HAYNM PEIICHUE yPABHEHHUS

—2" 4+ q(zx) 2z =p*z

YAOBJIETBOPAIOIIECEe HaYaJIbHBIM YCJIOBHUAM

DOyukIws z (z, p) ABISIETCS TAaK¥Ke PEIeHNeM HHTErPAJIbHOTO YDABHEHUST

1

z(z,p) :sinp(l—x)—i—/l)/ q(t) z(t,p)sinp (t —x)dt (23)

T

CobCTBEHHBIMY 3HAYEHUAMU COLPIXKEHHON 330891 ABJIAIOTCT A = ﬁi. Haitgem acmmirTo-
TUKY COOCTBEHHBIX (DYHKITHIA

2k (v) = 2 (2, pr) =sinpp (1 —2) + O (;) = sin7k (1 —z)+ O <11€> -

= (=) sinwkz + O <]1>

s mosryaerust 6oJiee TOUHON aCHMITOTHKY, Mpeodpa3yeM MHTerpaabHOe ypasHeHue (23)
CJIEIYIONMUM 00Pa3oM

,dwm):gnpu—xy+;/ﬂﬁﬁf<anpu—ty+;AJEGfaapnmphuﬁyh>.

T

1
-sinp(t—x)dt—sinp(l—x)—i-;/z q(t) sinp (1 —t)sinp (t — x) dt+
Y Ay . . _
+P2/:c q(t) </t Q(T)Z(T,p)smp(T—t)dT)smp(t—:p)dt:

1 R C—
—sinp(l—a:)—z/ q(t)dt-cosp(l—w)+2p/ q(t) cosp(l—2t+ x)dt+

P Ja
+p12 /m o) ( /t G () sinp (r — B dT) sinp (t — ) dt. (24)

Hns pemenust z (z, p) ypasuenne (21) cnpaseymsa anasorngnas (9) onenka: z (z,p) =
O (eump‘(l_m)). [lozpcTapss 3T0 B MOCTEIHEM CaaraeMoM B (24) moji WHTErpajgoM U ydu-
ThiBast orenku (7), (8), noayunm

R R
z(x,p):sinp(l—x)—%/ q(t)dt~cosp(1—x)+2p/ q(t) cosp(l—2t+ x)dt+

ol Impl(1—2)
0 A (25)
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Tloacrasnas p = py,

1t
zk(x)zsinpk(l—x)—m/ q(t) dt-cospr(l—uz)+

L 1
+— q(t) cosp(l—2t+x)dt+O () (26)
2pk Ji Ph
rae pp = 7k + 5k; op = G+ %’“ +0 (k%) [Mocrynas anaJOrm4YHO, KaK U IPH HIOJLYyYeHUN
ornenkn (19), nmeem

sinpy, (1 — ) = sin (7k + 0;) (1 — ) =sin7k (1 — z) - cos 6 (1 — z) +

+cosmk (1 — x)sinéy (1 — z) =sinwk (1 — )+ (k:) (1 —z)-cosk (1 — )40 (;)

cos py, (1 — z) = cos (rk + 0;) (1 — z) = cosTk (1 — z) - cos 0 (1 — z) —

_ 1
—sin7k (1 —x)-sindg (1 — z) = cosk (1 — l’)—T (1 —z)-sin7k (1 —2)+0 <k2>

cos py (1 — 2t + z) = cos (7k + &) (L + 2 — 2t) = (=1 cos (7k + 61) (z —2t) =

= (—D)¥cosmk (x — 2t) — (1) (x —2t) -sinwk (z — 2t) + O <1> .

L2
YauTeIBas MOIydIeHHbIE OTIeHKH, 3 (26) morydnm
ap + by

2k () =sinwk (1 —x) + cosmk (1 —x) —

T _1\k 1
5% q(t) dt-cosmk(1—x)+ (27:2:/ q(t) cosmk (x —2t)dt + O <l<:12> . (27

Takum 06paszom, HOKA3aHA CJIETYIOIIAsT

Teopema 4.1. Jlaa cobemeennmx Pynruul conpascennoli cnexmpasvnot sadawu (21),
(22) cnpasedausor acumnmomuueckue gopmyave (27).

Ouesudno, wmo ece cobemeennve Gynryuu zx () conpascennot sadawu (21), (22) ydo-
saemeopatom ycaosuro zy (0) # 0. Tak xak, 6 NPOMUBHOM CAYHAE ML TOAYUAEM, HINO OHG
ydosaemeopaem ypasrenuto (21) u navarvnom yeaosuam zx (1) = 0, z. (1) = 0. Toeda
OHG ABAALTNCA MPUBUAALHUM pewenuem ypasruenus (21), m.e. z, (z) = 0, npomusope-
“UMD TNOMY, 4IMO OHA ABAAEMCA cobemeennol dynryued. Imom daxm seasemea owenv

BANHCHDIM TIPU USYHEHUU 60TPOCA basucHocmy coOCMEEHHDIT ¢yH%’uU’ﬁ, 6 npocmpaHcImee
L, (0,1).

B 3aksouennn aBTOp BhIpajkaer O6J1aroJlapHOCTh CBOEMY HAYYHOMY PYKOBOIUTEIIIO
v T.B.KacymoBy (T.B.Gasymov) 3a mOCTAHOBKY 3aJa4il W 3a IEHHBIE COBETHI MPH
BBITIOJTHEHUT STON PAbOTHI.
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