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Invese Problem for the Eigenvalues of the Pauli Operator

Aliyeva Aynura

Abstract. In the paper we consider inverse problem for the eigenvalues of the Pauli operator. By
the given set of the defined s—functions a scheme is proposed to reconstruct the domain of the
problem.
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1. Introduction

The solution of inverse problems is one of the important problems of the mathematical
physics. In addition to theoretical interest, these problems also have important applied
applications. In traditional inverse spectral problems, by the given experimental data
(scattering data, normalization numbers, etc.), the potential is determined or necessary
and sufficient conditions are established that provide the unique determination of the
sought functions [10, 11].

In contrast to these problems, the inverse spectral problem with respect to the domain
has a different specificity. First, in such problems it is required to define not the function,
but the domain. Second, the selection of data (observation results) sufficient to define the
domain is in itself a very difficult problem [1, 2].

Note that the existence problems of such problems have been studied by many authors.
It was shown in that these problems are well-posed if the set of feasible domains satisfies
certain geometric requirements, for example, consists of open sets [3].

Here we introduce the definition of s-functions, depending on the spectral data of the
Pauli operator and then by the given set of these functions give a scheme to reconstruct
the domain of the problem.

Main results. Consider the problem

Ppop=Xp, z€D, (1.1)

¢ =0, € Sp . (1.2)

Here P is the Pauli operator defined as follows [4]
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P=P(a,v)-J+ 0B, (1.3)

where D is bounded convex domain from R?, Sp € C? is its smooth boundary. We
assume that ¢ (z) is positive differentiable function that satisfies the condition t2q (zt) =

q(:c);a:ER2,t€R;J=<1 0>, U=<1 0 ), P =(a,v) = (-iV —a)*+V;

01 0 -1
1 is an imaginary unit; V' is smooth enough function; V = 8%, 8% ca= (a1, az) € R? is
a vector potential; B is a magnet field generated by the vector potential a i.e.
B=_—ay— —a1.
oz oy !

If to consider all the above denotations then two dimensional Pauli operator may be
written in the following explicit form

p_ (—iV—a)Q—FaQ(%—ala%—FV 0
0 (—iV—a)Q—aQ%—l—al%%—V

- by O

S\ 0 by )

where
bt = —A + (2iar + ag) £ + (2iag — a1) 5 +a> +V,
b22 = —A + (21:0,1 — CLQ) % + (22'@2 +CL1) % + a2 + V

(1.4)

Let us denote the set of all bounded convex domains D € R by M. Let
K={DeM:SpeC?}.

Definition 1. The functions s;j(z) defined by the relation

IV (@)

Aj

S (:L') x€eSp, j=12,.. (1.5)

is called to be s- functions of the problem (1.1)-(1.2) in the domain D.

The problem under consideration is: to define a domain D € K for which holds
sj(z)=gj(x), z€Sp, j=12,.., (1.6)

where s; (z) are indeed s- functions of the problem (1.1)-(1.2) in the domain D and
gj(x) ,j=1,2, - are given in R" functions.

Other words we have to find a domain from the set M in which the s- functions of
the problem (1.1)-(1.2) are equal to the given functions. Since by the definition (1.5) s-
functions of the problem (1.1)-(1.2) in the domain Dare defined by the eigenvalues and
eigenfuctions of the eigenvalue problem (1.1)-(1.2), we can consider these functions as a
spectral data and considered problem as an inverse spectral problem for the Pauli operator.
But in duffer from usual inverse spectral problems here we have to define not functions,
but the domain of the problem.
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In [8] is proved that forthe the eigenvalues A; of problem (1.1)-(1.2) in the domain D
is valid the following formula

1
)\j ="n; — ZCIQ,
where 7; , j = 1,2,... are eigenvalues of the Laplace operator A in the domain D with
the same boundary condition. In [6] the following formula is obtained for the eigenvalues
of the Schedinger operator with potential of form t2¢ (zt) = q ()

uj

0 = ;maX/SD Y ()2 Pp (n (2)) ds, (1.7)

where Pp (z) = max (l,x), = € R" is the support function of the domain D and maz is
€

taken over all eigenfunctions corresponding to the eigenvalue 7; in the case of its multi-
plicity. If n; is a simple eigenvalue, then the maz before integral is absent.

Since vector potential a = (ay, az) € R? is taken to be constant the term —ia2 can be
neglected. Considering this after substituting (1.7) into (1.6) we obtain
/ 05 (@) Pp (n (@) ds =2, j—=1,2,... (1.8)
Sp

This is the basic relation in solving the considered problem — determination of the domain
D by the given set of the s- functions.

Below we the lemma that will be used in hereafter.

Lemma 1. [9] Let f (z) s continuous function defined on Sg. Then for any D;, Dy € K
is valid

| toands= [ jm@ydss [ fm@)ds (1.9)
Spy+Dy Spy

Sy

where D1 + Ds is a Minkovski sum of the domains defined as
D+ Dy={z:x =21+ 22, 1 € D1, 22 € Do}

Now let us consider the unit ball B C R?with the center at the origin and denote by
Sp its boundary. By ¢k (), k=1,2,... we denote the basis in C' (Sg) in the space of the
continuous functions on Sp. These function may be positively-homogeneously extended
into the unit ball B. Obtained by this way new functions ¢y () will be continuous and
positively-homogeneous. Without loss the generality, we can redesignate @ () by g ().
Thus, we obtain a system of continuous, positively- homogeneous functions defined in B.

It is known that each of the continuous, positively-homogeneous functions ¢;(x) may
be presented as

ok (2) = lim |gh () = B ()], (1.10)
n—oo
where ¢F (z), hF(z), k,n = 1,2,... are convex, positively-homogeneous, continuous

functions [5]. Considering that to each convex, positively-homogeneous, continuous func-
tion corresponds bounded convex domain that is called its support function we can state
that there exist bounded convex domains G¥ and HY such that
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gn (x) = Py (x), by (x) = Py (x) .

It means that the functions g¥ (z), hE (z) are support functions for the domains G¥ and
HY  k,n=1,2,.... Then it is logically to call the domains G¥ and H” basis domains.
Considering this in (1.10) we obtain

ok (r) = lim {ng (x) — Pllirjg (:c)] . (1.11)

n—oo

Since n (x) € Sp for arbitrary € Sp we can decompose we can expandPp (z), z € Sp
in terms of basic functions gy, (z)

Pp(x) =Y arpr(x), T €S, acR. (1.12)
k=1
Considering (1.11) from the last we get
P (x) =3 ay lim [Pl (2) = Phy (x)], = € S, (1.13)
k=1

The set of indexes k for which a > 0(ay, < 0) denote by I™ (I7). Then relation (1.13)
may be rewritten in the form

Pp (x) = lim (akPG;% (@) + Yper+ anPus (@) _

(1.14)
= n]LrEO (ZkGIJr akPGﬁ (a;) — Zke[* OékPHyli (a;) s ) , x € 8p.
From this considering the properties of the support functions we obtain [27]
. k k . k k
D — nh_}ngo Z arG), + Z oapHy | = nh_}ngo Z oGy — Z opH,y | (1.15)
kel— kel+ kelt kel—

By virtue of the Lemma 1 we obtain

/ gj (x) Pp (n(x))ds + lim </ gj (z) Pp (n(x)) ds+
Sp Pker—(—ar)Sqk

n—oo

+ /z:kelJr akSHk g; (ZL‘) PD (’I’L (l‘)) ds) =

~ lm ( /E s, @ PO @) s+ /Z s, HO PP () ds> .

From this taking into account (1.8) we get

| 9@ P (@) ds =
Sp

| o @romas— [

ak

gj () Pp (n(x)) ds] =2. (1.16)

HE
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Substituting here (1.13) we finally obtain
o

Z Apm (G) aponm =2, j=1,2,..., (1.17)
k,m=1

where

n—oo

A () = Jimy |5, 5(0) [P (n(2)) = Pr (n ()] ds—

- szﬁ g; (z) [PG;{L (n(z)) = Pgm (n (x))] ds

Equation (1.17) has generally speaking, not the only solution. With the help of solu-
tions of this equation by formula (1.13) the support function Pp(x)of the desired domainD
is constructed. As we noted above, the region is uniquely determined by its support func-
tion as its subdifferential at the point 0.

Suppose that there exists the only solution of (1.17) that provides convexity for the

N2
function Pp (x) defined by relation (1.13). Let us show that the expressions%, x €

Sp, j=1,2,... for problem (1.1), (1.2) in the domain Ddetermined by taking the subd-
ifferential at the point 0 of the support function constructed by formula (1.13) with the
help of this solution are in fact s- functions. Indeed, if D is a domain in which problem
(1.1), (1.2) has the s-functions given by formula (1.5), then expanding by formula (1.13)
and arguing as above, we arrive at equation (1.17) with the same coefficients. From the
assumption of the uniqueness of the solution to this equation, it follows that D = D.If
equation (1.17) has not a unique solution, then the desired domain is among the domains
determined by taking subdifferntial of the support function constructed by formula (1.13)
using these solutions, taking into account the convexity condition.
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