
Journal of Contemporary Applied Mathematics
V. 11, No 2, 2021, December
ISSN 2222-5498

Invese Problem for the Eıgenvalues of the Paulı Operator

Aliyeva Aynura

Abstract. In the paper we consider inverse problem for the eigenvalues of the Pauli operator. By
the given set of the defined s−functions a scheme is proposed to reconstruct the domain of the
problem.
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1. Introduction

The solution of inverse problems is one of the important problems of the mathematical
physics. In addition to theoretical interest, these problems also have important applied
applications. In traditional inverse spectral problems, by the given experimental data
(scattering data, normalization numbers, etc.), the potential is determined or necessary
and sufficient conditions are established that provide the unique determination of the
sought functions [10, 11].

In contrast to these problems, the inverse spectral problem with respect to the domain
has a different specificity. First, in such problems it is required to define not the function,
but the domain. Second, the selection of data (observation results) sufficient to define the
domain is in itself a very difficult problem [1, 2].

Note that the existence problems of such problems have been studied by many authors.
It was shown in that these problems are well-posed if the set of feasible domains satisfies
certain geometric requirements, for example, consists of open sets [3].

Here we introduce the definition of s-functions, depending on the spectral data of the
Pauli operator and then by the given set of these functions give a scheme to reconstruct
the domain of the problem.
Main results. Consider the problem

Pϕ = λϕ , x ∈ D , (1.1)

ϕ = 0 , x ∈ SD . (1.2)

Here P is the Pauli operator defined as follows [4]
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P = P (a, ν) · J + σB, (1.3)

where D is bounded convex domain from R2, SD ∈ C2 is its smooth boundary. We
assume that q (x) is positive differentiable function that satisfies the condition t2q (xt) =

q (x); x ∈ R2, t ∈ R; J =

(
1 0
0 1

)
, σ =

(
1 0
0 −1

)
, P = (a, v) = (−i∇− a)2+V ;

i is an imaginary unit; V is smooth enough function; ∇ =
{
∂
∂x ,

∂
∂y

}
; a = (a1, a2) ∈ R2 is

a vector potential; B is a magnet field generated by the vector potential a i.e.

B =
∂

∂x
a2 −

∂

∂y
a1.

If to consider all the above denotations then two dimensional Pauli operator may be
written in the following explicit form

P =

(
(−i∇− a)2 + a2

∂
∂x − a1

∂
∂y + V 0

0 (−i∇− a)2 − a2 ∂
∂x + a1

∂
∂y + V

)
=

=

(
b11 0
0 b22

)
.

(1.4)

where
b11 = −∆ + (2ia1 + a2)

∂
∂x + (2ia2 − a1) ∂

∂y + a2 + V ,

b22 = −∆ + (2ia1 − a2) ∂
∂x + (2ia2 + a1)

∂
∂y + a2 + V

Let us denote the set of all bounded convex domains D ∈ R2 by M . Let

K =
{
D ∈M : SD ∈ C2

}
.

Definition 1. The functions sj(x) defined by the relation

sj (x) =
|∇uj (x)|2

λj
, x ∈ SD, j = 1, 2, ... (1.5)

is called to be s- functions of the problem (1.1)-(1.2) in the domain D.
The problem under consideration is: to define a domain D ∈ K for which holds

sj (x) = gj (x) , x ∈ SD, j = 1, 2, ..., (1.6)

where sj (x) are indeed s- functions of the problem (1.1)-(1.2) in the domain D and
gj (x) ,j = 1, 2, · · · are given in Rn functions.

Other words we have to find a domain from the set M in which the s- functions of
the problem (1.1)-(1.2) are equal to the given functions. Since by the definition (1.5) s-
functions of the problem (1.1)-(1.2) in the domain Dare defined by the eigenvalues and
eigenfuctions of the eigenvalue problem (1.1)-(1.2), we can consider these functions as a
spectral data and considered problem as an inverse spectral problem for the Pauli operator.
But in duffer from usual inverse spectral problems here we have to define not functions,
but the domain of the problem.
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In [8] is proved that forthe the eigenvalues λj of problem (1.1)-(1.2) in the domain D
is valid the following formula

λj = ηj −
1

4
a2,

where ηj , j = 1, 2, ... are eigenvalues of the Laplace operator ∆ in the domain D with
the same boundary condition. In [6] the following formula is obtained for the eigenvalues
of the Schedinger operator with potential of form t2q (xt) = q (x)

ηj =
1

2
max
uj

∫
SD

|∇uj (x)|2 PD (n (x)) ds, (1.7)

where PD (x) = max
l∈D

(l, x) , x ∈ Rn is the support function of the domain D and max is

taken over all eigenfunctions corresponding to the eigenvalue ηj in the case of its multi-
plicity. If ηj is a simple eigenvalue, then the max before integral is absent.

Since vector potential a = (a1, a2) ∈ R2 is taken to be constant the term −1
4a

2 can be
neglected. Considering this after substituting (1.7) into (1.6) we obtain∫

SD

gj (x)PD (n (x)) ds = 2, j = 1, 2, . . . (1.8)

This is the basic relation in solving the considered problem – determination of the domain
D by the given set of the s- functions.

Below we the lemma that will be used in hereafter.

Lemma 1. [9] Let f (x) s continuous function defined on SB. Then for any D1, D2 ∈ K
is valid ∫

SD1+D2

f (n (x)) ds =

∫
SD1

f (n (x)) ds+

∫
SD2

f (n (x)) ds, (1.9)

where D1 +D2 is a Minkovski sum of the domains defined as

D1 +D2 = {x : x = x1 + x2, x1 ∈ D1, x2 ∈ D2} .

Now let us consider the unit ball B ⊂ R2with the center at the origin and denote by
SB its boundary. By ϕk (x) , k = 1, 2, . . . we denote the basis in C (SB) in the space of the
continuous functions on SB. These function may be positively-homogeneously extended
into the unit ball B. Obtained by this way new functions ϕ̃k (x) will be continuous and
positively-homogeneous. Without loss the generality, we can redesignate ϕ̃k (x) by ϕk (x).
Thus, we obtain a system of continuous, positively- homogeneous functions defined in B.

It is known that each of the continuous, positively-homogeneous functions ϕj(x) may
be presented as

ϕk (x) = lim
n→∞

[
gkn (x)− hkn (x)

]
, (1.10)

where gkn (x) , hkn (x) , k, n = 1, 2, ... are convex, positively-homogeneous, continuous
functions [5]. Considering that to each convex, positively-homogeneous, continuous func-
tion corresponds bounded convex domain that is called its support function we can state
that there exist bounded convex domains Gkn and Hk

n such that
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gkn (x) = PGk
n

(x) , hkn (x) = PHk
n

(x) .

It means that the functions gkn (x) , hkn (x) are support functions for the domains Gkn and
Hk
n , k, n = 1, 2, ... . Then it is logically to call the domains Gkn and Hk

n basis domains.
Considering this in (1.10) we obtain

ϕk (x) = lim
n→∞

[
P kGk

n
(x)− P kHk

n
(x)
]
. (1.11)

Since n (x) ∈ SB for arbitrary x ∈ SD we can decompose we can expandPD (x), x ∈ SB
in terms of basic functions ϕk (x)

PD (x) =
∞∑
k=1

αkϕk (x) , x ∈ SB, α ∈ R. (1.12)

Considering (1.11) from the last we get

PD (x) =

∞∑
k=1

αk lim
n→∞

[
P kGk

n
(x)− P kHk

n
(x)
]
, x ∈ SB. (1.13)

The set of indexes k for which α ≥ 0(αk < 0) denote by I+ (I−). Then relation (1.13)
may be rewritten in the form

PD (x) = lim
n→∞

(
αkPGk

n
(x) +

∑
k∈I+ αkPHk

n
(x)
)

=

= lim
n→∞

(∑
k∈I+ αkPGk

n
(x)−

∑
k∈I− αkPHk

n
(x) ,

)
, x ∈ SB.

(1.14)

From this considering the properties of the support functions we obtain [27]

D − lim
n→∞

∑
k∈I−

αkG
k
n +

∑
k∈I+

αkH
k
n

 = lim
n→∞

∑
k∈I+

αkG
k
n −

∑
k∈I−

αkH
k
n

 . (1.15)

By virtue of the Lemma 1 we obtain∫
SD

gj (x)PD (n (x)) ds+ lim
n→∞

(∫
∑

k∈I− (−αk)SGk

gj (x)PD (n (x)) ds+

+

∫
∑

k∈I+ αkSHk

gj (x)PD (n (x)) ds

)
=

= lim
n→∞

(∫
∑

k∈I+ αkSGk

gj (x)PD (n (x)) ds+

∫
∑

k∈I− (−αk)SHk

gj (x)PD (n (x)) ds

)
.

From this taking into account (1.8) we get∫
SD

gj (x)PD (n (x)) ds =

=
∞∑
k=1

αk lim
n→∞

[∫
S
Gk

gj (x)PD (n (x)) ds −
∫
S
Hk

gj (x)PD (n (x)) ds

]
= 2. (1.16)
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Substituting here (1.13) we finally obtain
∞∑

k,m=1

Ak,m (j)αkαm = 2, j = 1, 2, ..., (1.17)

where

Ak,m (j) = lim
n→∞

[∫
S
Gk
n

gj (x)
[
PGm

n
(n (x))− PHm

n
(n (x))

]
ds−

−
∫
S
Hk
n

gj (x)
[
PGm

n
(n (x))− PHm

n
(n (x))

]
ds

]
.

Equation (1.17) has generally speaking, not the only solution. With the help of solu-
tions of this equation by formula (1.13) the support function PD(x)of the desired domainD
is constructed. As we noted above, the region is uniquely determined by its support func-
tion as its subdifferential at the point 0.

Suppose that there exists the only solution of (1.17) that provides convexity for the

function PD (x) defined by relation (1.13). Let us show that the expressions
|∇uj(x)|2

λj
, x ∈

SD, j = 1, 2, ... for problem (1.1), (1.2) in the domain Ddetermined by taking the subd-
ifferential at the point 0 of the support function constructed by formula (1.13) with the
help of this solution are in fact s- functions. Indeed, if D̄ is a domain in which problem
(1.1), (1.2) has the s-functions given by formula (1.5), then expanding by formula (1.13)
and arguing as above, we arrive at equation (1.17) with the same coefficients. From the
assumption of the uniqueness of the solution to this equation, it follows that D = D.If
equation (1.17) has not a unique solution, then the desired domain is among the domains
determined by taking subdifferntial of the support function constructed by formula (1.13)
using these solutions, taking into account the convexity condition.
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