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Gas Flow in a Formation-Well-Pipeline System

N.A. Agayeva

Abstract. A model of the process of non-stationary gas flow in a formation-well-pipeline system
is constructed. A boundary value problem of non-stationary gas flow in a formation-well-pipeline
system involving a choke is solved allowing for the law of pressure change at the outlet of the
pipeline.

Wellhead and bottomhole pressures are determined. Analytic expressions that allow to determine
change in the volume of gas production per unit of time when connected to a drunk line are
determined.

Key Words and Phrases: gas flow, pressure, simulation, Laplace transform, differential equa-
tion, pipeline.

1. Introduction

To determine operational indicators of gas wells with abnormally high formation pres-
sures during gas connections and withdrawals from transport line, it is necessary to con-
sider the gas flow in the formation-well-pipeline system. Connection and withdrawal of gas
from the operating line leads to a violation of the operating mode of running well. Further,
after a while the well goes into another steady state but with a different recovery. This
raises the question of determining the influence of these connections or gas withdrawal on
the existing regime [4].

The work [1-14] were devoted to this problem. The methods of conjugation of models
for a formation and well are in the work [5, 6]. In this paper, joint solution of equations
describing multiphase flows in a formation and well, are used.

In these works, filtration and gas flow in the conjugated formation-pipeline is not
considered.

The work [5] was devoted to physic-mathematical formalization, development and
software implementation of computational algorithms for simulating non-stationary three-
phase flows in the conjugated formation-well system.

Installation of an electric drive centrifugal pump, that essentially differs from the con-
sidered formation-pipeline system.

The works [9-13] were devoted to the study of filtration of gas-liquid mixture and gassy
fluid in one-dimensional and two-dimensional models.
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In these works the researcher are conducted without taking into account the filtration
process and fluid flow in the conjugated formation-well system.

As noted at the beginning, in reality the gas flow process occurs in the formation-
pipeline system. Therefore, gas flow must be considered together allowing for the existent
of a regularity choke, and this work is devoted to thus problem.

A strict solution of this problem in to take into account the interaction in the formation-
pipeline system. At the same time it is necessary to consider and study the system of
equation describing joint flow of gas-liquid mixture in the formation and in the wellbore
and in the pipeline [2-5]

These are nonlinear differential equations and it is not possible to get theor exact
solution. Therefore, carried out approximately with sufficient accuary for practice [1-2].

Problem solution and methods for solving it. Let us consider flat radial filtration of
homogeneous gas in a homogeneous circular formation. We will solve the problem on the
bais of the material balance.

Boundary and initial condition of gas filtration are of the form:

Pl,._, =P (t),t>0, (1.1)
or =0,t >0, (1.2)
or =R,
k P.(0)+ P.(T) OP
2nhr— ———-2 — =G (r). 1.3
mhroa T 5|, =G0 (1.3)

Then, we will look for the formation pressure allowing for boundary condition (1.1)
and (1.2) in the form [1, 2]:

P:Pc(t)—i_A(t)f(T)? (14)

where A (t) - is an unknown function dependent on time ¢, f (r) - is a function dependents

on the coordinate r and satisfying boundary conditions (1.1) and (1.2). We select the
function f (r) satisfying boundary conditions (1.1) and (1.2) as follows [1,2]:

f(r):lnr——f—i-—. (1.5)

Taking the process isothermal, gas mass Gy in the formation at every moment of time can
bbe determined by the formula:

2 B
Gy = W;nh P - rdr, (1.6)

where 8 = %, Pt is atmospheric pressure, paim- is gas density at atmospheric pressure.
Gas inflow from the formation to the well per unit of time G may be determined by

the formula:
dGy

dt
Substituting expressions (1.4) and (1.5) in formula (1.6), we get:

G = (1.7)
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2 h RQ 2 R2
Go=""" 1P ()" TED A (1.8)
s 2 2
h =1 Ry 7 1 ( rc 2 Te 1 { re 3
where D = n7_6+§<R7) +R7_§(RT€> .
Substituting expressions (1.8) in formula (1.7) , we get:
th d 2 .
G¢=-""T B (1- 25 ) + DA (1.9)
B R

On other hand, gas inflow into the well per unit of time can be determined by the
formula [1]:

k (P0) + P(T)) . 0P
— h — , 1.1
G 5 mreh o . (1.10)
where P.(T)- is buttonhole pressure at the end of operation period.
Then substituting expression (1.4) in formula (1.10), we get:
k (Pc(o) + PC(T)) < Te )
G= ThA{) ([1——=]. 1.11
— 0 (1-4 (111)
Equating the expression (1.9) and (1.11), we get:
. Pe (1)
A=— . 1.12
A+ a«a D ( )
The solution of differential equation (1.12) is of the form:
1 [t
A=Apexp(—at) — = [ Pc(r)exp|[—a(t—71)]dr, (1.13)

D Jo

where Ap-is a constant of integration determined from the initial condition (1.3), o =

k (Pe(0)+Pc(T))
pwm R% D ’

distribution field in the formation:

Substituting the obtained expression in formula (1.5), we get pressure

r r Te 1 [t
P=P.(t)+ <ln TR + Rk) [AO exp (—at) — D /0 Pc(T)exp[—a(t —7)] d:l .14)

We now consider gas flow in a lifting pipeline. Gas flow in the pipe and continuity
equation are described by I.A.Chorniy equations [17,18]:

9P 0Q
o~ ot @

o°P  ,0Q
~ 5 =0 (1.15)

Q = pv,
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were p-is gas density at the given pressure, v- is gas flow rate averaged along the cross-
section of the pipe.

Having differentiated the first equation of expression (1.15) with respect to time ¢, the
second one with respect to x and subtracting one from another, we get:

0’Q _ ,9°Q Q)

We represent the cross-sectional velocity of the gas column as the sum of two velocities:
UV = Ve + Uy, (1.17)

where v, - is the velocity of gas column as a solid body (portable velocity, the first letter

from the french word ‘entrainer’), v, is cross-sectional velocity of gas column from its

compressibility (relative velocity, the first either of the English word relative).
Substituting expression (1.17) in formula

Q=pv=pu.+pu (1.18)

or
Q = ue + ur, (1.19)

where U, = pve, Uy = pUy.
Then, substituting expression (1.19) in equation (1.16), we get [3]:

Pu.  0%u, 282ur Oou. Ou,
= -2 1.20
o2 "o T o a<6t+8t> (1:20)
Since the equation (1.20) is linear, is decays into 2 equation
0?u, Oue ].DC — ]3
20—° =—"—2% 1.21
oz ot I (1.21)
where P, is well head pressure.
82U»p 282Ur 8Ur _Z.Dy - ]3(:
= — —_ 1.22
a2~ o o T (1.22)

Having placed the origin of the coordinate axis xin the lower sections of the pipe and
directed it upwards, for initial and boundary conditions we will have:

G (0)
e (1.23
due
th =0, (1.24)
t=0
Uply_g = 0, (1.25)
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O,
il — (1.26)
It |_g
U, =0, (1.27)

ou,

=0 1.28

where f is pipe’s flow area.
Applying the Laplace transform and taking into account the convolution theorem
[19,20] allowing for initial condition (1.23) and (1.24), we have:
G0) 1 t

t 1
= “ + 7 /0 P, (1)exp[—2a(t — 7)] dr — 7 /0 Py (1)exp[—2a(t — 7)]dT—

_% exp (—2at) [Py (0) = P (0)] + 2al

We will look for the solution of equation (1.22) allowing for boundary conditions (1.27)
and (1.28) in the form [16-18]:

"y = g% ) (1 ~ cos ”Tl””) , (1.30)

where ; (t) is an unknown function dependent on time ¢, [ is the pipe run depth. Substi-
tuting expresion (1.30) in equation (1.22), multiplying the both hand sides of the obtained

expression by (1 — cos ”l”:) and integrating it form 0 to [ we get the equation:

[Py (0) — P (0)]. (1.29)

c2i%n? 2

Bit20bi+ i = (Py - P.). (1.31)

Applying the Laplace transform and considering the conversion and convolution the-

orems [19,20], from equation (1.31) allowing for initial conditions (1.25) and (1.26), we
get:

0 = % [/0 Py (1) exp[—a(t —7)]cos [w; (t —7)]dT— — / Py (1)exp[—a(t —7)] x
X sin [w; (t — 7)) dT—Py(iO) exp (—at) sin (w t)—/o Py (T)exp[—a(t — )] cos [w;(t —7)]dr+
+w% ; P.(t)exp[—a(t — 7)]sin [w; (t — 7)] dT + Pw(ZO) exp (—at) sin (w t)] . (1.32)
. 2272 )
Wi =g A

From the continuity function allowing for boundary condition (1.27) and expressions
(1.29), (1.30) and (1.32) we get the following integral equation:

G(0) exp (—at)— L DM;P’“ h/ Be(7)exp—a (t— 7)) dr = G(O)+=~ [P, (0) — P, (0)] +
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+J;/O Py () exp [~2a (t — 7)) dr — J;/O P, (v) exp [~2a (t — 7)] dr—

—% exp (—2at) [Py (0) — P.(0)]. (1.33)

Applying the Laplace transform and considering convolution and conversion theorems,
from expression (1.33) we get:

Pe = P (0) [exp( Bit) 2 B gl exp (—fat) ;‘f:gj + [f (Pe (02)aley ©) GéO)] y
2ca  (a—B1) (2a — p1) B (a — B2) (2a — B2) exp (—
g [51[32 A (81— B2) *p(=Ar) + B2 (B2 — B1) P 52t)] i

_ t _
—l—% [;; —ﬁﬂll /0 Py (r)exp[-pi (t —7)] dr —I— - 62 / Py (1) exp [—B2 (t — 7)] dT} -
f a— B3 a— [
—o [P.(0) — P(0)] (ﬂz o exp (—pit) + o exp (—Bgiﬁ)) +
G(0) 2a — (1 2a — (B9
G oxp () 500+ oxp () 522 (En
where b = W%fc(o)]%’, (1 and B9 are the roots of the equation
2 f f
s —|—<a+bl)s+bla 0. (1.35)

From the continuity condition at the wellhead allowing for expression (1.29), (1.30),
(1.32) and (1.33), applying the Laplace transform we have:

GO | B S
fs l s(s+2a) l s(s+2a) (1 36)
s 9 sP, _ Py(0)—P:(0) sP, —-a '
i=1 3l | (sta)’+w? (s4a)? +w? (s+a)+w? e

where G (0) is gas inflow the well per unit of time at initial moment, G, -is well produc-
tivity.

Passage of gas through the choke.

Passing through the choke, gas enters the pipeline. When gas pass through the choke
is pressure significantly decreases.

In the first approximation, the dependence between gas consuption Q)i p and pressure
drop between the inlet and outlet of the choke is accepted linear [4]:

Qup = ao(Py(t) — Pup(t)). (1.37)

where «aq is a productivity coefficient.
After the Laplace transform expression (1.37) we get

Qus = ao(Py — Pyp) (1.38)
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From the continuity equation we have

Gyl,—y = Qus- (1.39)

Substituting expressions (1.36) and (1.38) in formula (1.39) allowing for only one term of
the series, in the first approximation we get the following integral Volterra typeb equation
which we define Pyp(t)

G(0) + 1 P 1B +
fs I s(s+2a) 1 s(s+2a) (1 40)
2{ sPy,  P(0)-P.(0)  sP, }—a(f’ — Pyp) :
3 | (s+a)* w2 (s4a)? +w? (s+a)?+w?] 0y HEB
and from (1.40) we have
5  _ 5 GO P P
PHB - Py _7 faos — laps(s+2a) + locos(sy-l—Qa)_ . (141)
_.2 [ Py Py(0)—Pe(0) __sP.
3lag | (s+a)2—w? (st+a)?2—wi (s+a)2—wi

Gas flow in the trunk pipeline.

We consider gas flow in the trunk pipeline. We locale the origin of the coordinate
axisr; at the inlet of the pipeline and direct in the gas flow direction. Assume that at
the moment ¢ = 0 at the direction [y from the wellhead a pipeline with consumption G is
connected to the trunk pipeline. The equation of gas flow in the pipeline will be of the
form [9,10]

o?’P  ,9%°P OP  2a:c*G
) }) Sd— 0(xy — o). 1.42
o = o e T g M) (142
The initial and boundary conditions

or _—6295(1‘ —13),0< <] (1.43)

ot o - fl 1 2),V &L 0 .
P(xl, 0)|t=0 = PHB(O) — 2(11Q1(0).’L'1,0 <z <l (1.44)
P|ac1:0 = PHB(t),t > 0, (1.45)
Pl —, = P,t >0, (1.46)

where §(z, 1) is the Dirac’s function.
Allowing for boundary condition (1.45) and (1.46), we will look for the solution of the
equation (1.42) in the form:

n

P, t) — P . amx
P= PHB(t) — I_IB(ll)2:1}1 + ZQOQZ (t) <sm ll 1> N (147)
i=1

where g; (t) is an unknown function dependent as time ¢, [; is pipeline’s length.
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Substituting expression (1.47) in formula (1.42) allowing for initial conditions (1.43), (1.44)
similar to (1.31) in the case P» = const we get a differential equation with respect to ¢g;.
Having solved these equation and substituted the obtained result in the first equation of
the system (1.15), after the solution we get

Q1ly,—0 = Q1(0)e™ 241t + L [* Py, (1) exp [—2a1 (t—7)]dr—

> ( ) I poi (7 exp[ 2ay (t —7)]dr — 522 (1 — exp (—2axt)) (1.48)
where P» is pressure at the pipeline’s end
25 = 2% (exp(€1)(20 + £1) — exp(€a1)(2a + £)) + oo “RLEDZER(ED
—2 ( Pup(t) + 610t6) fy Pzéi(z exp(6L(t-7))dr _ & (20+6) [y P'fo?z exp(éz(tr))dr) _

_|_

+i§°gB O (exp(€1t)(2a + £1) — exp(£at) (20 + &2)) + 22D (exp(&1t) — exp(€at)) -

_daic? [Gsm (wlzﬂ {ﬁz(exp(&t) 1)=& (exp(€2t)—1)
L A h £1&2(61—€2) ’

(1.49)
where & and & are the roots of the equation s2 + 2a;s + ﬂ =0.

From the continuity condition Qg = Q1| #,—0 at the Wellhead, allowing for expression
(1.37) and (1.48) we get
ao(Py(t) = Pp(t)) = Qi(0)e ™ + it [ Prrp () exp [~2a1 (t — 7)] dr—

_ Z:‘Lzl ( ) fO woi (T) exp [—2a; (t — 7)) dT — 2a111 (1 —exp (—2a1t)), (1.50)

where pgp is pressure after the choke.
Applying the Lapace transformation, from the expression (1.50), in the first i = 1
define P,

P — 3a0lPlib(s+2a)(s+2a1)(s+81) (s+52) (s—€1) (s=&2) ((s+a)® +w?)
y A1 (s—j1)(s—j2)(s— JS)(S Ja)(s— 35)(8 Je)(s— J7)

SN I Y Pl PO
" Tilag s(s+2a1)(s+2a) l1la0 (s+2a1)(s+2a) lllao s(s+2a1)(s+2a)
2 sP1, 2 P(0) + 2 sP1, +

- 3hlag(s+2a1) ((s+a)?+w?)  hlao (s+2a)(s=&1)(s—€2) ' hlao(s+2a) (s—€1)(s—&2)
+ 2 Py (0) . 4 s2Pl. +

hilao(s+2a) (s=€1)(s—¢€2)  3hlao(s—&1)(s—&2) ((s+a)’+w?) (1.51)
+ P1, P(0) + Py0) 2  sPl. n 2G(0)a1

I(s+2a) ~ Is(s+2a) Is(s+2a) 31 ((s+a)2+w%> fs(s+2a1)
_ 2 Py (0)—Pc(0) + G(0) o 4s P, (0)—P.(0)

3l1lag(s+2a1) ((s+a)2+w2) aolifs(s+2a1)  3hilao(s—&1)(s—€2) ((s+a)*+w?)

2G( ) ) n  2(Py(0)—P:(0))
+rpatetee + mat + (5) e~ S (s taP+?)

where, A; = 5al2b + aglylb, P,(0) = LE(0)=20G0O)!

7

= po(s+2a1) b 2Py 5 (0)(s+2a1) 2Pup(0)

01 = et i )3 & T T ot)6) T a6
4aic G l

a6 &) i ST
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PL=P.0) |

2a — B 1 +2a—62 1 ]_I_[f(Pc(O)—Py(O)) G(O)]X
Bo—Bis+B1 B1—P2sH+ B 2alb b

X[Zaa +(oz—ﬁl)(2a—,31) 1 n (a— ) (2a—52)}

B152s Br(Br—PB2) s+pP1 Ba(B2—PB1)(s+ B2)

o B a—p 1 a—Pr 1
_2alb[Pc(O) F (0] (52—518+51+51—528+52>+

G(0) {2@—51 1 2a — By 1 ]

b |Bs—Bist B Bi—Brst B

j17j27.j37j47j5>j6aj7 - equation roots

(s — &1)(s — &2)(Baob (s + 2a)((s + a)? + w?)(s + B1)(s + B2)—
=3f(s + @)((s + a)* + w?) +3Ib((s + @) + w?)(s + B1)(s + B2) =
—25bl(s+2a)(s+ P1)(s+ B2) +2f s(s+2a)(s + a))+

+25(s + 2a1)(3agb 12(s + 2a) ((s + a)? + w?) (s + B1) (s + B2)—

=3f(s+a)((s+a)®+w?) +3Ib((s + a)? +w?)(s+ B1)(s + B2)— (1.52)

—2s5bl(s+2a)(s+ B1)(s+ P2) +2f s(s+2a)(s + o))—
—agli(s +2a1)(s — &) (s — &)(Bf(s + a)((s + a)* + w?)+
+2slb (s +2a)(s+ B1)(s + f2)—

=3Ib((s + a)? + w?) (s + B1)(s + B2) — 2fs(s +2a)(s +a)) =0

Applying the Laplace transform and considering the convolution and conversion theorem,
from the expressions (1.35), (1.52) and (1.49) allowing for numerical values of the system

parametres

c=300m s, u=10"%Pa-s;h = 10m; k = 5-10"*m?; p = 0.668kq - m~3;1 = 1000m;

Iy = 20000m; Iy = 200m; P.(0) = 24 - 10%Pa; Py = 24 - 10° Pa; P,(0) = 25 - 10° Pa;

Pyim = 10°Pa; P,(T) = 80 - 10°Pa; Ry, = 100m;m = 3,14;a = 10 35 L0y = 5- 107 a1

d=6-10"2%m:;d; =28 -10%m;dy = 28 - 10 2m;r. = 7.5 - 10 %m

Equation (1.52) takes the form

—8.5341206557 — 261.14472145% — 554.8469569s° — 543.9719964s* — 463.045838653 —
—204.725248352 — 0.4484496931s — 2.7750954981 - 109 = 0
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and we get,
P, = 2.45999441 - 10° 4 2.47514867 - 107 exp(—6.18821549 - 107%¢)+
+1.91734282 - 10° exp(—0.00220142208t )+
+1.77839541 - 10° exp(—0.8142343565t) —
—1.96218954 - 107 exp(—28.38548701t)+
+7.25584358 - 10° exp(—1.234873634 )+
11.343889923 - 105 exp(—0.08113866709¢) cos(0.9108927519 t)—
—1.15848128 - 10° exp(—0.08113866709¢) sin(0.9108927519 ¢)

P. = 5.27444657 - 107 exp(—0.00000124 t)—

4.27175414 - 105 exp(—19.30621)—

—4.14599944 - 10°—

—2.49989987 - 107 exp(—6.1883 - 1079%¢)+

1.90978618 - 105 exp(—0.00220142208 )+

+7.71152443 - 10° exp(—1.234873634t)+

1.84709 - 10° exp(—0.8142343565 t) —

+1.3450358 - 10° exp(—0.08113866709¢) cos(0.9108927519 ) —
—52009.6795 exp(—0.08113866709¢) sin(0.9108927519 t)-+
+2.50329492 - 107 exp(—28.38648701 ¢)

Q1 = —1.158837965 exp(—0.1t) sin(0.5345914328 )+
+0.1876109889 exp(—0.1t) cos(0.5345914328 t)+
0.0007131985852 exp(—0.002201422081 ¢)+
+0.003766347582 exp(—1.234873634¢)+

40.09856122154 exp(—28.38648701 )+

+6.821282984 exp(—6.1883 - 10~ %)+

+0.001212016763 exp(—0.8142343565 ¢)—

—3.426454683 exp(—0.000001240642 ) —

—0.0139214703 exp(—19.30619548 ¢) —

—3.645959724 exp(—0.2t)+

+0.0003152671 exp(—0.08113866709¢) cos(0.9108927519 t)+
40.000346236 exp(—0.08113866709¢t) cos(0.9108927519 t)
+6.160089261

(1.53)

(1.54)

(1.55)

Conclusion. The result of numerical calculation are in Fig. 2-6. In Fig. 2 and Fig.5 for

small values of time, in Fig.3 and Fig.4, Fig.6 for great values of time.

As can be seen from Fig. 2-4, when connected to the trunk line the well head and bot-
tom hole pressure at first increases and after same tie it drops and stabilized approaching

to in steady-state.

It is given from Fig.5 and Fig.6 that after connected to the trunk line the well produc-

tivity at first fluctuate and then begin to drop tending to its steady state value.

A model of the process of non-stationary gas flow in a formation-pipeline system during
connections and fluid withdrawal from the operating transport line, is constructed. Ana-
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lytic expression allowing to determine well productivity and also well head and buttonhole
pressure change at the outlet of the pipeline are obtained.

E7
uy
SN
R

27 | ks

CH

o

Fig.1
123



P,(TTa)

o?l

28 %107

185x1

275 %107

27 =107

265 = 107

26 =107

255 %107

2.5 % 107

245 %107

24 %107

235 %107

200

Fig.2 t = 1000c

P,(ITa)

™.

600

E00

1000

1)

27 =107

™~

265 =107

26 %107

255 =107

2.5 %107

245 =107

2.4 %107

235 =107

5 w108

Fig.3 t = 2.5-107c = 289day

124

15=107

2'.5 = 107 t(c)



P.(Tla)

46 %107

44107

42107

4. %107

33 %107

36 %107

34107
3.2 %107

3. 107

23 =107

26 %107

24x107 dem

22 %107 R e —
2. =107

_-=
0 10000 20000 30000 40000 50000 40000 Toa0a fl: C)

Fig.4

Q(xec)
9.50 ™
925 \/

875
2.50
5325

e

715
7.50
725

6.75
6.50
625 f

0 20 40 6l 30 100 120 140 160 130 200 f'(C)

Fig.5
125



T T T T T T T T T T T T T T T
] 3w’ 1.x10% 15x210% #(c)

Fig.6

Denotations P-is pressure at any point of the formation, Pa; Pjg-is pressure on the
formation’s contour, Pa;

P.- is buttonhole pressure, Pa; P, - is wellhead pressure, Pa;

¢ - is a time-dependent function, Pa; f- is flow area of the column of lifting pipes, m?
: fi-is flow are of the transport pipeline, m? ;h-formation’s power, m;a, a; - is a resistant
factor, ¢! r-is a coordinate, m;l-is a lifting pipe run depth, m;i- is the length of the
transport pipeline, m; r.-is well radius, m; Ry- is a radius of formation’s contour, m;7T -
is well’s operation period, s;T,t-is time, s;u - is dynamical viscosity of gas, Pas;m - is
porosity of formation’s rock , k - is formation’s permeability factor meo, p-is gas density,
kg/m?3;s - is gas propagation speed in gas, m/s;z-is a coordinate; 3,6, ®1, Pl., D, a—are
denotations.

Indices: atm— atmospheric; k - contour; ¢ - well; y — wellhead; e — portable ( the
first letter from the French word ”entrainer”) r — relative (the first letter of the English
word relative)

Sketched inscriptions
Fig.1-Calculation scheme
Fig.2-3-Dynamics of wellhead pressure
Fig.4- Dynamics of buttonhole pressure change
Fig.5 Dynamics of well productivity at the initial period
Fig.6-Dynamic of well productivity
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