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Gas Flow in a Formation-Well-Pipeline System

N.A. Agayeva

Abstract. A model of the process of non-stationary gas flow in a formation-well-pipeline system
is constructed. A boundary value problem of non-stationary gas flow in a formation-well-pipeline
system involving a choke is solved allowing for the law of pressure change at the outlet of the
pipeline.
Wellhead and bottomhole pressures are determined. Analytic expressions that allow to determine
change in the volume of gas production per unit of time when connected to a drunk line are
determined.

Key Words and Phrases: gas flow, pressure, simulation, Laplace transform, differential equa-
tion, pipeline.

1. Introduction

To determine operational indicators of gas wells with abnormally high formation pres-
sures during gas connections and withdrawals from transport line, it is necessary to con-
sider the gas flow in the formation-well-pipeline system. Connection and withdrawal of gas
from the operating line leads to a violation of the operating mode of running well. Further,
after a while the well goes into another steady state but with a different recovery. This
raises the question of determining the influence of these connections or gas withdrawal on
the existing regime [4].

The work [1-14] were devoted to this problem. The methods of conjugation of models
for a formation and well are in the work [5, 6]. In this paper, joint solution of equations
describing multiphase flows in a formation and well, are used.

In these works, filtration and gas flow in the conjugated formation-pipeline is not
considered.

The work [5] was devoted to physic-mathematical formalization, development and
software implementation of computational algorithms for simulating non-stationary three-
phase flows in the conjugated formation-well system.

Installation of an electric drive centrifugal pump, that essentially differs from the con-
sidered formation-pipeline system.

The works [9-13] were devoted to the study of filtration of gas-liquid mixture and gassy
fluid in one-dimensional and two-dimensional models.
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In these works the researcher are conducted without taking into account the filtration
process and fluid flow in the conjugated formation-well system.

As noted at the beginning, in reality the gas flow process occurs in the formation-
pipeline system. Therefore, gas flow must be considered together allowing for the existent
of a regularity choke, and this work is devoted to thus problem.

A strict solution of this problem in to take into account the interaction in the formation-
pipeline system. At the same time it is necessary to consider and study the system of
equation describing joint flow of gas-liquid mixture in the formation and in the wellbore
and in the pipeline [2-5]

These are nonlinear differential equations and it is not possible to get theor exact
solution. Therefore, carried out approximately with sufficient accuary for practice [1-2].

Problem solution and methods for solving it. Let us consider flat radial filtration of
homogeneous gas in a homogeneous circular formation. We will solve the problem on the
bais of the material balance.

Boundary and initial condition of gas filtration are of the form:

P |r=rc
= Pc (t) , t > 0, (1.1)

∂P

∂r

∣∣∣∣
r=Rk

= 0, t > 0, (1.2)

2π h r
k

µβ

Pc (0) + Pc (T )

2

∂P

∂r

∣∣∣∣
t=0

= G (r) . (1.3)

Then, we will look for the formation pressure allowing for boundary condition (1.1)
and (1.2) in the form [1, 2]:

P = Pc (t) +A (t) f (r) , (1.4)

where A (t) - is an unknown function dependent on time t, f (r) - is a function dependents
on the coordinate r and satisfying boundary conditions (1.1) and (1.2). We select the
function f (r) satisfying boundary conditions (1.1) and (1.2) as follows [1,2]:

f (r) = ln
r

rc
− r

Rk
+

rc
Rk

. (1.5)

Taking the process isothermal, gas mass G0 in the formation at every moment of time can
bbe determined by the formula:

G0 =
2πmh

β

∫ Rk

rc

P · rdr, (1.6)

where β = Patm
ρatm

, Patm is atmospheric pressure, ρatm- is gas density at atmospheric pressure.

Gas inflow from the formation to the well per unit of time G may be determined by
the formula:

G = −dG0

dt
. (1.7)

Substituting expressions (1.4) and (1.5) in formula (1.6), we get:
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G0 =
2πmh

β

[
Pc (t)

R2
k − r2c
2

+
R2

k

2
DA (t)

]
, (1.8)

where D = ln Rk
rc

− 7
6 + 1

2

(
rc
Rk

)2
+ rc

Rk
− 1

3

(
rc
Rk

)3
.

Substituting expressions (1.8) in formula (1.7) , we get:

G = −
πmhR2

k

β

[
•
P c

(
1− r2c

R2
k

)
+D

•
A (t)

]
. (1.9)

On other hand, gas inflow into the well per unit of time can be determined by the
formula [1]:

G =
k (Pc(0) + Pc(T ))

µβ
π rch

∂P

∂r

∣∣∣∣
r=rc

, (1.10)

where Pc(T )- is buttonhole pressure at the end of operation period.
Then substituting expression (1.4) in formula (1.10), we get:

G =
k (Pc(0) + Pc(T ))

µβ
π hA (t)

(
1− rc

Rk

)
. (1.11)

Equating the expression (1.9) and (1.11), we get:

•
A+ αA = −

•
P c (t)

D
. (1.12)

The solution of differential equation (1.12) is of the form:

A = A0 exp (−αt)− 1

D

∫ t

0

•
P c (τ) exp [−α (t− τ)] dτ, (1.13)

where A0-is a constant of integration determined from the initial condition (1.3), α =
k (Pc(0)+Pc(T ))

µmR2
k D

. Substituting the obtained expression in formula (1.5), we get pressure

distribution field in the formation:

P = Pc (t) +

(
ln

r

rc
− r

Rk
+

rc
Rk

)[
A0 exp (−αt)− 1

D

∫ t

0

•
P c (τ) exp [−α (t− τ)] dτ

]
.

(1.14)
We now consider gas flow in a lifting pipeline. Gas flow in the pipe and continuity

equation are described by I.A.Chorniy equations [17,18]:

−∂P

∂x
=

∂Q

∂t
+ 2aQ,

−∂P

∂t
= c2

∂Q

∂x
, (1.15)

Q = ρυ,
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were ρ-is gas density at the given pressure, υ- is gas flow rate averaged along the cross-
section of the pipe.

Having differentiated the first equation of expression (1.15) with respect to time t, the
second one with respect to x and subtracting one from another, we get:

∂2Q

∂t2
= c2

∂2Q

∂x2
− 2a

∂Q

∂t
. (1.16)

We represent the cross-sectional velocity of the gas column as the sum of two velocities:

υ = υe + υr, (1.17)

where υe - is the velocity of gas column as a solid body (portable velocity, the first letter
from the french word ‘entrainer’), υr is cross-sectional velocity of gas column from its
compressibility (relative velocity, the first either of the English word relative).

Substituting expression (1.17) in formula

Q = ρ υ = ρ υe + ρ υr (1.18)

or

Q = ue + ur, (1.19)

where ue = ρ υe, ur = ρ υr.

Then, substituting expression (1.19) in equation (1.16), we get [3]:

∂2ue
∂t2

+
∂2ur
∂t2

= c2
∂2ur
∂x2

− 2a

(
∂ue
∂t

+
∂ur
∂t

)
. (1.20)

Since the equation (1.20) is linear, is decays into 2 equation

∂2ue
∂t2

+ 2a
∂ue
∂t

=

•
P c −

•
P y

l
, (1.21)

where Py is well head pressure.

∂2ur
∂t2

= c2
∂2ur
∂x2

− 2a
∂ur
∂t

+

•
P y −

•
P c

l
(1.22)

Having placed the origin of the coordinate axis xin the lower sections of the pipe and
directed it upwards, for initial and boundary conditions we will have:

ue|t=0 =
G (0)

f
, (1.23)

due
dt

∣∣∣∣
t=0

= 0, (1.24)

ur|t=0 = 0, (1.25)
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∂ur
∂t

∣∣∣∣
t=0

= 0, (1.26)

ur|x=0 = 0, (1.27)

∂ur
∂x

∣∣∣∣
x=l

= 0, (1.28)

where f is pipe’s flow area.
Applying the Laplace transform and taking into account the convolution theorem

[19,20] allowing for initial condition (1.23) and (1.24), we have:

ue =
G (0)

f
+

1

l

∫ t

0
Pc (τ) exp [−2a (t− τ)] dτ − 1

l

∫ t

0
Py (τ) exp [−2a (t− τ)] dτ−

− 1

2al
exp (−2at) [Py (0)− Pc (0)] +

1

2al
[Py (0)− Pc (0)] . (1.29)

We will look for the solution of equation (1.22) allowing for boundary conditions (1.27)
and (1.28) in the form [16-18]:

ur =
n∑

i=1

φi (t)

(
1− cos

iπx

l

)
, (1.30)

where φi (t) is an unknown function dependent on time t, l is the pipe run depth. Substi-
tuting expresion (1.30) in equation (1.22), multiplying the both hand sides of the obtained
expression by

(
1− cos iπx

l

)
and integrating it form 0 to l we get the equation:

••
φi + 2a

•
φi +

c2i2π2

3l2
φi =

2

3l

( •
P y −

•
P c

)
. (1.31)

Applying the Laplace transform and considering the conversion and convolution the-
orems [19,20], from equation (1.31) allowing for initial conditions (1.25) and (1.26), we
get:

φi =
2

3l

[∫ t

0
Py (τ) exp [−a (t− τ)] cos [ωi (t− τ)] dτ− a

ωi

∫ t

0
Py (τ) exp [−a (t− τ)]×

× sin [ωi (t− τ)] dτ−Py (0)

ωi
exp (−at) sin (ω t)−

∫ t

0
Py (τ) exp [−a (t− τ)] cos [ωi (t− τ)] dτ+

+
a

ωi

∫ t

0
Pc (τ) exp [−a (t− τ)] sin [ωi (t− τ)] dτ +

Pc (0)

ωi
exp (−at) sin (ω t)

]
, (1.32)

ω2
i =

c2i2π2

3l2
− a2.

From the continuity function allowing for boundary condition (1.27) and expressions
(1.29), (1.30) and (1.32) we get the following integral equation:

G(0) exp (−α t)−k (Pc (0) + Pk)

Dµβ
π h

∫ t

0

•
P c (τ) exp [−α (t− τ)] dτ = G(0)+

f

2al
[Py (0)− Pc (0)]+
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+
f

l

∫ t

0
Pc (τ) exp [−2a (t− τ)] dτ − f

l

∫ t

0
Py (τ) exp [−2a (t− τ)] dτ−

− f

2al
exp (−2at) [Py (0)− Pc (0)] . (1.33)

Applying the Laplace transform and considering convolution and conversion theorems,
from expression (1.33) we get:

Pc = Pc (0)

[
exp (−β1t)

2a− β1
β2 − β1

+ exp (−β2t)
2a− β2
β1 − β2

]
+

[
f (Pc (0)− Py (0))

2alb
− G(0)

b

]
×

×
[
2αa

β1β2
+

(α− β1) (2a− β1)

β1 (β1 − β2)
exp (−β1t) +

(α− β2) (2a− β2)

β2 (β2 − β1)
exp (−β2t)

]
+

+
f

lb

[
α− β1
β2 − β1

∫ t

0
Py (τ) exp [−β1 (t− τ)] dτ +

α− β2
β1 − β2

∫ t

0
Py (τ) exp [−β2 (t− τ)] dτ

]
−

− f

2alb
[Pc (0)− P (0)]

(
α− β1
β2 − β1

exp (−β1t) +
α− β2
β1 − β2

exp (−β2t)

)
+

+
G(0)

b

[
exp (−β1t)

2a− β1
β2 − β1

+ exp (−β2t)
2a− β2
β1 − β2

]
, (1.34)

where b = k[Pk+Pc(0)]
βµ

π h
D , β1 and β2 are the roots of the equation

s2 +

(
a+

f

bl

)
s+

f

bl
α = 0. (1.35)

From the continuity condition at the wellhead allowing for expression (1.29), (1.30),
(1.32) and (1.33), applying the Laplace transform we have:

G(0)
fs + 1

l

¯̇Pc
s(s+2a) −

1
l

¯̇Py

s(s+2a)+∑n
i=1

2
3l

[
sP̄y

(s+a)2+ω2
i

− Py(0)−Pc(0)

(s+a)2+ω2
i

− sP̄c

(s+a)2+ω2
i

]
= Ḡq

. (1.36)

where G (0) is gas inflow the well per unit of time at initial moment, Gq -is well produc-
tivity.

Passage of gas through the choke.
Passing through the choke, gas enters the pipeline. When gas pass through the choke

is pressure significantly decreases.
In the first approximation, the dependence between gas consuption QHB and pressure

drop between the inlet and outlet of the choke is accepted linear [4]:

QHB = α0(Py(t)− PHB(t)). (1.37)

where α0 is a productivity coefficient.
After the Laplace transform expression (1.37) we get

Q̄HB = α0(P̄y − P̄HB) (1.38)
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From the continuity equation we have

Gq|x=l = QHB . (1.39)

Substituting expressions (1.36) and (1.38) in formula (1.39) allowing for only one term of
the series, in the first approximation we get the following integral Volterra typeb equation
which we define PHB(t)

G(0)
fs + 1

l

¯̇Pc
s(s+2a) −

1
l

¯̇Py

s(s+2a)+

2
3l

[
sP̄y

(s+a)2+ω2
1

− Py(0)−Pc(0)

(s+a)2+ω2
1

− sP̄c

(s+a)2+ω2
1

]
= α0(P̄y − P̄HB)

(1.40)

and from (1.40) we have

P̄HB = P̄y − G(0)
fα0s

−
•̄
Pc

lα0s(s+2a) +
•̄
Py

lα0s(s+2a)−
− 2

3lα0

[
sP̄y

(s+a)2−ω2
1
− Py(0)−Pc(0)

(s+a)2−ω2
1

sP̄c

(s+a)2−ω2
1

] . (1.41)

Gas flow in the trunk pipeline.
We consider gas flow in the trunk pipeline. We locale the origin of the coordinate

axisx1 at the inlet of the pipeline and direct in the gas flow direction. Assume that at
the moment t = 0 at the direction l2 from the wellhead a pipeline with consumption G is
connected to the trunk pipeline. The equation of gas flow in the pipeline will be of the
form [9,10]

∂2P

∂t2
= c2

∂2P

∂x21
− 2a1

∂P

∂t
− 2a1c

2G

f1
δ(x1 − l2). (1.42)

The initial and boundary conditions
∂P

∂t

∣∣∣∣
t=0

= −c2
G

f1
δ (x1 − l2) , 0 ≤ x ≤ l, (1.43)

P (x1, 0)|t=0 = PHB(0)− 2a1Q1(0)x1, 0 ≤ x ≤ l, (1.44)

P |x1=0 = PHB(t), t > 0, (1.45)

P |x1=l1
= P2, t > 0, (1.46)

where δ(x, l) is the Dirac’s function.
Allowing for boundary condition (1.45) and (1.46), we will look for the solution of the

equation (1.42) in the form:

P = PHB(t)−
PHB(t)− P2

l1
x1 +

n∑
i=1

φ2i (t)

(
sin

iπx1
l1

)
, (1.47)

where φ2i (t) is an unknown function dependent as time t, l1 is pipeline’s length.
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Substituting expression (1.47) in formula (1.42) allowing for initial conditions (1.43), (1.44)
similar to (1.31) in the case P2 = const we get a differential equation with respect to φ2i.
Having solved these equation and substituted the obtained result in the first equation of
the system (1.15), after the solution we get

Q1|x1=0 = Q1(0)e
−2a1t + 1

l1

∫ t
0 PHm (τ) exp [−2a1 (t− τ)] dτ−

−
∑n

i=1

(
iπ
l1

) ∫ t
0 φ2i (τ) exp [−2a1 (t− τ)] dτ − P2

2a1l1
(1− exp (−2a1t))

, (1.48)

where P2 is pressure at the pipeline’s end

φ2i =
φ20

ξ1−ξ2
(exp(ξ1t)(2a+ ξ1)− exp(ξ2t)(2a+ ξ2)) + φ̇20

exp(ξ1t)−exp(ξ2t)
ξ1−ξ2

−

− 2
πi

(
PHB(t) +

ξ1(2a+ξ1)
∫ t
0 PHB(τ) exp(ξ1(t−τ))dτ

ξ1−ξ2
− ξ2(2a+ξ2)

∫ t
0 PHB(τ) exp(ξ2(t−τ))dτ

ξ1−ξ2

)
−

+

+ 2PHB(0)
π(ξ1−ξ2)

(exp(ξ1t)(2a+ ξ1)− exp(ξ2t)(2a+ ξ2)) +
2ṖHB(0)
π(ξ1−ξ2)

(exp(ξ1t)− exp(ξ2t))−
−4a1c2

l1

[
G
f1

sin
(
πl2
l1

)] [
ξ2(exp(ξ1t)−1)−ξ1(exp(ξ2t)−1)

ξ1ξ2(ξ1−ξ2)

]
,

(1.49)

where ξ1 and ξ2 are the roots of the equation s2 + 2a1s+
c2π2i2

l21
= 0.

From the continuity condition QHB = Q1|x1=0 at the wellhead, allowing for expression
(1.37) and (1.48) we get

α0(Py(t)− PHB(t)) = Q1(0)e
−2a1t + 1

l1

∫ t
0 PHB (τ) exp [−2a1 (t− τ)] dτ−

−
∑n

i=1

(
iπ
l1

) ∫ t
0 φ2i (τ) exp [−2a1 (t− τ)] dτ − P2

2a1l1
(1− exp (−2a1t)) ,

(1.50)

where HB is pressure after the choke.
Applying the Lapace transformation, from the expression (1.50), in the first i = 1

define Py

P̄y = 3α0l2l1b(s+2a)(s+2a1)(s+β1)(s+β2)(s−ξ1)(s−ξ2)((s+a)2+ω2)
A1(s−j1)(s−j2)(s−j3)(s−j4)(s−j5)(s−j6)(s−j7)

×
×
[
− 1

l1lα0

Pc(0)
s(s+2a1)(s+2a) +

1
l1lα0

P̄1c
(s+2a1)(s+2a) +

1
l1lα0

Py(0)
s(s+2a1)(s+2a)−

− 2
3l1lα0(s+2a1)

sP̄1c
((s+a)2+ω2

1)
− 2

l1lα0

Pc(0)
(s+2a)(s−ξ1)(s−ξ2)

+ 2
l1lα0(s+2a)

sP̄1c
(s−ξ1)(s−ξ2)

+

+ 2
l1lα0(s+2a)

Py(0)
(s−ξ1)(s−ξ2)

− 4
3l1lα0(s−ξ1)(s−ξ2)

s2P̄1c
((s+a)2+ω2

1)
+

+ P̄1c
l(s+2a) −

Pc(0)
ls(s+2a) +

Py(0)
ls(s+2a) −

2
3l

sP̄1c
((s+a)2+ω2

1)
+ 2G(0)a1

fs(s+2a1)
−

− 2
3l1lα0(s+2a1)

Py(0)−Pc(0)

((s+a)2+ω2
1)

+ G(0)
α0l1fs(s+2a1)

− 4s
3l1lα0(s−ξ1)(s−ξ2)

Py(0)−Pc(0)

((s+a)2+ω2
1)
+

+ 2G(0)
l1fα0(s−ξ1)(s−ξ2)

+ P2
l1s(s+2a1)

+
(

π
l1

)
Φ̄1

(s+2a1)
−

∑n
i=1

2(Py(0)−Pc(0))

3l((s+a)2+ω2
1)

]
(1.51)

where, A1 = 5α0l
2b+ α0l1lb, Py(0) =

fPc(0)−2αG(0)l
f

Φ̄1 =
φ0(s+2a1)

(s−ξ1)(s−ξ2)
+

•
φ0

(s−ξ1)(s−ξ2)
+ 2PHB(0)(s+2a1)

π(s−ξ1)(s−ξ2)
+ 2

•
PHB(0)

π(s−ξ1)(s−ξ2)
−

− 4a1c2

l1s(s−ξ1)(s−ξ2)
G
f1

sin
(
π l2
l1

)
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P̄1c = Pc (0)

[
2a− β1
β2 − β1

1

s+ β1
+

2a− β2
β1 − β2

1

s+ β2

]
+

[
f (Pc (0)− Py (0))

2alb
− G(0)

b

]
×

×
[
2αa

β1β2s
+

(α− β1) (2a− β1)

β1 (β1 − β2)

1

s+ β1
+

(α− β2) (2a− β2)

β2 (β2 − β1) (s+ β2)

]
+

− f

2alb
[Pc (0)− Py (0)]

(
α− β1
β2 − β1

1

s+ β1
+

α− β2
β1 − β2

1

s+ β2

)
+

+
G(0)

b

[
2a− β1
β2 − β1

1

s+ β1
+

2a− β2
β1 − β2

1

s+ β2

]
j1, j2, j3, j4, j5, j6, j7 - equation roots

(s− ξ1)(s− ξ2)(3α0b l
2(s+ 2a)((s+ a)2 + ω2)(s+ β1)(s+ β2)−

−3f(s+ α)((s+ a)2 + ω2) + 3lb((s+ a)2 + ω2)(s+ β1)(s+ β2)−

−2s b l (s+ 2a)(s+ β1)(s+ β2) + 2f s(s+ 2a)(s+ α))+

+2s(s+ 2a1)(3α0b l
2(s+ 2a)((s+ a)2 + ω2)(s+ β1)(s+ β2)−

−3f(s+ α)((s+ a)2 + ω2) + 3lb((s+ a)2 + ω2)(s+ β1)(s+ β2)−

−2s b l (s+ 2a)(s+ β1)(s+ β2) + 2f s(s+ 2a)(s+ α))−

−α0l1(s+ 2a1)(s− ξ1)(s− ξ2)(3f(s+ α)((s+ a)2 + ω2)+

+2slb (s+ 2a)(s+ β1)(s+ β2)−

−3lb((s+ a)2 + ω2)(s+ β1)(s+ β2)− 2fs(s+ 2a)(s+ α)) = 0

(1.52)

Applying the Laplace transform and considering the convolution and conversion theorem,
from the expressions (1.35), (1.52) and (1.49) allowing for numerical values of the system
parametres

c = 300m · s−1, µ = 10−5Pa · s;h = 10m; k = 5 · 10−14m2; ρ = 0.668kq ·m−3; l = 1000m;

l1 = 20000m; l2 = 200m;Pc(0) = 24 · 106Pa;P0 = 24 · 106Pa;Pk(0) = 25 · 106Pa;

Patm = 105Pa;Pc(T ) = 80 · 105Pa;Rk = 100m;π = 3, 14; a = 10−3s−1; a1 = 5 · 10−1a−1;

d = 6 · 10−2m; d1 = 28 · 10−2m; d2 = 28 · 10−2m; rc = 7.5 · 10−2m

Equation (1.52) takes the form

−8.53412065s7 − 261.1447214s6 − 554.8469569s5 − 543.9719964s4 − 463.0458386s3−
−204.7252483s2 − 0.4484496931s− 2.7750954981 · 10−9 = 0
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and we get,

Py = 2.45999441 · 106 + 2.47514867 · 107 exp(−6.18821549 · 10−9t)+
+1.91734282 · 105 exp(−0.00220142208t)+
+1.77839541 · 105 exp(−0.8142343565t)−
−1.96218954 · 107 exp(−28.38548701t)+
+7.25584358 · 105 exp(−1.234873634 t)+
+1.343889923 · 106 exp(−0.08113866709t) cos(0.9108927519 t)−
−1.15848128 · 105 exp(−0.08113866709t) sin(0.9108927519 t)

(1.53)

Pc = 5.27444657 · 107 exp(−0.00000124 t)−
4.27175414 · 106 exp(−19.3062 t)−
−4.14599944 · 106−
−2.49989987 · 107 exp(−6.1883 · 10−9t)+
1.90978618 · 105 exp(−0.00220142208 t)+
+7.71152443 · 105 exp(−1.234873634t)+
1.84709 · 105 exp(−0.8142343565 t)−
+1.3450358 · 106 exp(−0.08113866709t) cos(0.9108927519 t)−
−52009.6795 exp(−0.08113866709t) sin(0.9108927519 t)+
+2.50329492 · 107 exp(−28.38648701 t)

(1.54)

Q1 = −1.158837965 exp(−0.1t) sin(0.5345914328 t)+
+0.1876109889 exp(−0.1t) cos(0.5345914328 t)+
0.0007131985852 exp(−0.002201422081 t)+
+0.003766347582 exp(−1.234873634t)+
+0.09856122154 exp(−28.38648701 t)+
+6.821282984 exp(−6.1883 · 10−9t)+
+0.001212016763 exp(−0.8142343565 t)−
−3.426454683 exp(−0.000001240642 t)−
−0.0139214703 exp(−19.30619548 t)−
−3.645959724 exp(−0.2t)+
+0.0003152671 exp(−0.08113866709t) cos(0.9108927519 t)+
+0.000346236 exp(−0.08113866709t) cos(0.9108927519 t)
+6.160089261

(1.55)

Conclusion. The result of numerical calculation are in Fig. 2-6. In Fig. 2 and Fig.5 for
small values of time, in Fig.3 and Fig.4, Fig.6 for great values of time.

As can be seen from Fig. 2-4, when connected to the trunk line the well head and bot-
tom hole pressure at first increases and after same tie it drops and stabilized approaching
to in steady-state.

It is given from Fig.5 and Fig.6 that after connected to the trunk line the well produc-
tivity at first fluctuate and then begin to drop tending to its steady state value.

A model of the process of non-stationary gas flow in a formation-pipeline system during
connections and fluid withdrawal from the operating transport line, is constructed. Ana-
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lytic expression allowing to determine well productivity and also well head and buttonhole
pressure change at the outlet of the pipeline are obtained.

Fig.1
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Fig.2 t = 1000c

Fig.3 t = 2.5 · 107c = 289day
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Fig.4

Fig.5
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Fig.6

Denotations P -is pressure at any point of the formation, Pa; Pk-is pressure on the
formation’s contour, Pa;

Pc- is buttonhole pressure, Pa; Py - is wellhead pressure, Pa;

φ - is a time-dependent function, Pa; f - is flow area of the column of lifting pipes, m2

; f1-is flow are of the transport pipeline, m2 ;h-formation’s power, m;a, a1 - is a resistant
factor, c−1; r-is a coordinate, m; l-is a lifting pipe run depth, m; l1- is the length of the
transport pipeline, m; rc-is well radius, m;Rk- is a radius of formation’s contour, m;T -
is well’s operation period, s; τ, t-is time, s;µ - is dynamical viscosity of gas, Pas;m - is
porosity of formation’s rock , k - is formation’s permeability factor m2, ρ-is gas density,
kg/m3; s - is gas propagation speed in gas, m/s;x-is a coordinate; β, θ,Φ1, P1c, D, α–are
denotations.

Indices: atm—- atmospheric; k - contour; c - well; y —- wellhead; e —- portable ( the
first letter from the French word ”entrainer”) r – relative (the first letter of the English
word relative)

Sketched inscriptions

Fig.1-Calculation scheme

Fig.2-3-Dynamics of wellhead pressure

Fig.4- Dynamics of buttonhole pressure change

Fig.5 Dynamics of well productivity at the initial period

Fig.6-Dynamic of well productivity
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