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Abstract. In this paper we consider the mathematical model of the nonlinear bridge problem
with a strong delay in linear aerodynamic resistance force. The existence and uniqueness of the
solution is investigated by modelling this problem as the Cauchy problem for an operator coefficient
equation in a certain space.
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1. Introduction

A suspension bridge is a general construction of civil engineering structure. Many
papers have been devoted to the modelling of suspension bridges, for instance, in [1],
Lazer and McKenna studied the problem of nonlinear oscillation in a suspension bridge.
They introduced a (one-dimensional) mathematical model for the bridge that takes into
account of the fact that the coupling provided by the stays connecting the main cable to
the deck of the road bed is fundamentally nonlinear, that is, they gave rise to the some
system of semi linear hyperbolic equation (see[2-3]), where the first equation describes the
vibration of the road bed in the vertical plain and the second equation describes that of
the main cable from which the road bed is suspended by the tie cables. In recently, there
has been a growing interest in this area.

There are many references to study the existence and asymptotic behavior of solutions
for the mathematical model of suspension bridge, (see [ 4-10 ] and references there in).
In recent studies, the existence of global minimal attractors of dynamic systems created
by these problems has been considered ( see [3-10]). See also [11] for the existence of
global attractors for the coupled system of suspension bridge equations in the case of the
tensioning cable has one common point with the roadbed.

In recent years, the control of partial differential equations with time delay effects
has become the most requested area of research. Time delays arise in many applications,
because, in most instances, physical, chemical, biological, thermal, and economic phenom-
ena naturally not only depend on the present state but also on some past occurrences. In
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many cases it was shown that an arbitrarily small delay may destabilize a system which
is uniformly asymptotically stable in the absence of delay unless additional conditions or
control terms have been used[12- 15 ].

In this paper, we consider the corresponding mixed problem with a strong delay in
linear aerodynamic resistance force. We prove the theorem on the existence and uniqueness
of the solution of considered problem.

2. Statement of the problem. Existence and uniqueness of the solution.

We consider the following mathematical model for the oscillations of the bridge with strong
delay 




utt (x, t) + uxxxx (x, t) + [u− v]+ + λ1ut(x, t)+
+λ2ut(x, t− τ1) + g1(u, v) = 0,

vtt(x, t) − vxx(x, t)− [u− v]+ + µ1υt(x, t)+
+µ2υt(x, t− τ2) + g2(u, v) = 0

(2.1)

where u(x, t) is state function of the road bed and v(x, t) is that of the main cable;
τ1, τ2 > 0 represents the time delay, λ1, λ2, µ1, µ2 are real numbers such that |λ2| < λ1,
|µ2| < µ1, and g1(u, v) = |u|p−1|v|p+1u, g2(u, v) = |u|p+1|v|p−1v,
p ≥ 1. Here [a]+ = max {a, 0} .
Let’s define the following initial and boundary conditions for the system (2.1).




u(0, t) = uxx(0, t) = u(l, t) = uxx(l, t) = v(0, t) = v(l, t) = 0, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, l),

ut(x, t− τ1) = f01(x, t− τ1), x ∈ (0, l), t ∈ (0, τ1),
v(x, 0) = v0(x), v

′(x, 0) = v1(x), x ∈ (0, l),
υt(x, t− τ2) = f02(x, t− τ2), x ∈ (0, l), t ∈ (0, τ2).

(2.2)

In order to establish the existence of a unique solution to (2.1)-(2.2), we introduce the
new variables(see [12-15]):

z1 (x, ρ, t) = ut(x, t− τ1ρ), ρ ∈ (0, 1), x ∈ (0, l), t > 0

z2 (x, ρ, t) = υt(x, t− τ2ρ), ρ ∈ (0, 1), x ∈ (0, l), t > 0

Obviously, z1 and z2 are solutions to the following problems:




τ1z1t (x, ρ, t) + z1ρ (x, ρ, t) = 0, ρ ∈ (0, 1), x ∈ (0, l), t > 0
z1 (x, ρ, 0) = f01(x,−ρτ 1), x ∈ (0, l), ρ ∈ (0, 1)

τ2z2t (x, ρ, t) + z2ρ (x, ρ, t) = 0, ρ ∈ (0, 1), x ∈ (0, l), t > 0,
z2 (x, ρ, 0) = f02(x,−ρτ 2), x ∈ (0, l), ρ ∈ (0, 1)

(2.3)

So, problem (2.1)-(2.3) takes the form





utt (x, t) + uxxxx (x, t)+ [u− v]+ + λ1ut (x, t) + λ2z1 (x, 1, t) = 0, in (0, 1) × (0,∞) ,
vtt(x, t)− vxx(x, t)− [u− v]+ + µ1υt(x, t) + µ2z2(x, 1, t) = 0, in (0, 1) × (0,∞),

τ1z1t (x, ρ, t) + z1ρ (x, ρ, t) = 0, in (0, l)× (0, 1) × (0,∞) ,
τ2z2t (x, ρ, t) + z2ρ (x, ρ, t) = 0, in (0, l)× (0, l)× (0,∞) ,

(2.4)
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



u (0, t) = uxx (0, t) = u (l, t) = uxx (l, t) = 0,
v (0, t) = v (l, t) = 0,

z1 (0, ρ, t) = z1 (l, ρ, t) = 0,
z2 (0, ρ, t) = z2 (l, ρ, t) = 0,

(2.5)





u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, l),
z1 (x, ρ, 0) = f01(x,−ρτ 1), x ∈ (0, l), ρ ∈ (0, 1),

v(x, 0) = v0(x), υt(x, 0) = v1(x), x ∈ (0, l),
z2 (x, ρ, 0) = f02(x,−ρτ 2), x ∈ (0, l), ρ ∈ (0, 1)

(2.6)

For investigating the problem (2.4)-(2.6), we introduce the following notations:

Hk(a,b) =
{
y : y, y′, ..., y(k) ∈ L2(a, b)

}
,

Ĥk(a,b) =

{
y : y ∈ Hk(a,b), y(2s) (a) = y(2s) (b) = 0, s = 0, 1, ...,

[
k

2

]}
,

where [r] is the integer part of the number r . We will denote the space Ĥk(0, l) as Ĥk .

We introduce the following space:

H = Ĥ2 × L2 (0, l)× Ĥ1 × L2 (0, l)× L2((0, 1) × (0, l)) × L2((0, 1) × (0, l)),

equipped with the scalar product

〈ω, ω̃〉 =

∫ l

0
u1xxũ1xxdx+

∫ l

0
u2ũ2dx+

∫ l

0
u3ũ3dx+

∫ l

0
u4ũ4dx+

+τ |λ2|

∫ l

0

∫ 1

0
z1z̃1dρdx+ τ |µ2|

∫ l

0

∫ 1

0
z2z̃2dρdx,

for all ω = (u1, u2, u3, u4, z1, z2)
T , ω̃ = ( ũ1, ũ2, ũ3, ũ4, z̃1, z̃2)

T ∈ H .
Let’s define the following operators A0, A1(·) and F (·) in the space H. The linear

operator A0 is defined by

A0ω =




−u2
u1xxxx + λ1u2 + λ2z1 (·, 1)

−u4
−u3xx + µ1u4 + µ2z2 (·, 1)

1
τ1
z1ρ

1
τ2
z2ρ




,

with domain

D (A0) =
{
ω : ω = (u1, u2, u3, u4, z1, z2)

T ∈ H, u1 ∈ Ĥ4, u2 ∈ Ĥ2, u3 ∈ Ĥ2,

u4 ∈ Ĥ1, zi, ziρ ∈ L2((0, 1) × (0, l)), zi (·, 1) ∈ L2((0, 1) × (0, l)), i = 1, 2 } .
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The nonlinear operators A1(·) and F (·) , acting from H into the space H, are respectively

defined as

A1(ω) =




0
[u1 − u3]+

0

− [u1 − u3]+
0
0




, F (ω) =




0
g1(u, v)

0

g2(u, v)
0
0




.

Let u1 (t) = u (·, t), u2 (t) = ut (·, t), u3 (t) = v (·, t), u4 (t) = υt (·, t) ,
z1(t) = z1(·, t), z2(t) = z2(·, t) and denote by

ω = ω(t) = (u1(t), u2(t), u3(t), u4(t), z1(t), z2(t))
T ,

ω(0) = ω0 = (u10, u20, u30, u40, z1(· − ρτ), z2(· − ρτ)).

Then the problem (2.4)-(2.6) can be rewritten as an initial- value problem:

{
ω′ +A0ω +A1(ω) + F (ω) = 0

ω(0) = ω0
(2.7)

We have the following existence and uniqueness result:

Theorem 2.1. Assume that

|λ2| ≤ λ1and |µ2| ≤ µ1. (2.8)

Then for any ω0 ∈ H, the problem (2.7) has a unique solution

ω(·)∈C( [0, +∞) , H ).

Moreover, if ω0 ∈ D (A0), the solution of (2.7) satisfies

ω(·)∈C1( [0, +∞) , H ) ∩C( [0, +∞) , D (A0) ) .

Before proving the theorem, we will investigate the auxiliary problem as in [16-18, 21].
For this purpose, we start to assign the following nonlinear operator for each positive K>0:

FK(ω) =




0
g1K(u, v)

0

g2K(u, v)
0
0




where

giK(u, v) =

{
gi(u, v), u2 + v2 < K2,

gi(K
u√

u2+v2
,K v√

u2+v2
), u2 + v2 ≥ K2.
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At first, let’s take a look at the following problem:{
ω′ +A0ω +A1(ω) + FK(ω) = 0

ω(0) = ω0
(2.9)

To solve the problem (2.9), we should prove the following Lemmas to use the known results
for the operator equations in the monograph [19].

Lemma 2.2. A0 is maximal dissipative operator.

Proof. We start by showing that (− A0) is dissipative. So, for
ω = (u1, u2, u3, u4, z1, z2)

T ∈ D (A0), we have

〈A0ω, ω〉 = −

∫ l

0
u1xxu2xxdx+

∫ l

0
u2 (u1xxxx + λ1u2 + λ2z1 (·, 1)) dx−

−

∫ l

0
u3xu4xdx+

∫ l

0
u4 (−u3xx + µ1u4 + µ2z2(·, 1)) dx+

+ |λ2|

∫ l

0

∫ 1

0
z1z1ρdρdx+ |µ2|

∫ l

0

∫ 1

0
z2z2ρdρdx =

= λ1

∫ l

0
|u2|

2dx+λ2

∫ l

0
u2z1(·, 1)dx+

+µ1

∫ l

0
|u4|

2dx+ µ2

∫ l

0
u4z2 (·, 1) dx+

|λ2|

2

∫ l

0
|z1 (·, 1)|

2dx−

−
|λ2|

2

∫ l

0
|u2|

2dx+
|µ2|

2

∫ l

0
|z2 (·, 1)|

2dx−
|µ2|

2

∫ l

0
|u4|

2dx. (2.10)

Using Young’s inequality for the second and fourth term of (2.10), we arrive at

〈A0ω, ω〉 ≥ (λ1 − |λ2|)

∫ l

0
|u2|

2dx+(µ1 − |µ2|)

∫ l

0
|u4|

2dx ≥ 0

by virtue of (2.8).
Next, we show that (− A0) is maximal dissipative operator. That is, for each
F = (f1, f2, f3, f4, f5, f6)

T ∈ H we have to find ω ∈ D(A) such that

ω +A0ω = F, (2.11)

i.e., 



u1 − u2 = f1
u2+u1xxxx + λ1u2 + λ2z1 (·, 1) = f2

u3 − u4 = f3
u4 − u3xx + µ1u4 + µ2z2(·, 1) = f4

τ1z1 + z1ρ = τ1 f5

τ2z2 + z2ρ = τ2 f6

(2.12)
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u1(0) = u1(l) = u1xx(0) = u1xx(l) = 0,

u2(0) = u2(l) = 0,

u3(0) = u3(l) = 0,

u4(0) = u4(l) = 0,

z1(·, 0) = u2 = u1 − f1

z2(·, 0) = u4 = u3 − f3.

The first and fifth equations of (2.12) give

z1 (x, ρ, t) = τ1 e−τ1ρ

∫ ρ

0
f5 (θ, ·) eθτ1dθ + (u1 − f1) e

−ρτ1 (2.13)

Analogously, the third and sixth equations of (2.12) give

z2 (x, ρ, t) = τ2 e−τ2ρ

∫ ρ

0
f6 (θ, ·) eθτ2dθ + (u3 − f3) e

−ρτ2 (2.14)

Replacing u2 = u1 − f1 , u4 = u3 − f3 ,

z1 (·, 1) = τ1 e−τ1

∫ 1

0
f5 (θ, ·) eθτ1dθ + (u1 − f1) e

−τ1

and

z2 (·, 1) = τ2 e−τ2

∫ 1

0
f6 (θ, ·) eθτ2dθ + (u3 − f3) e

−τ2

from (2.12), we obtain that

{
κ1u1 + ∂4u1 = F2, u1∈ Ĥ4

κ2u3 − ∂2u3 = F4, u3∈ Ĥ2 (2.15)

where 



κ1 = 1 + λ1 + λ2e
−τ1 > 0

κ2 = 1 + µ1 + µ2e
−τ2 > 0

F2 = f2 + κ1f1 − λ2τ1 e−τ1
∫ 1
0 f5 (θ, ·) eθτ1dθ

F4 = f4 + κ2f3 − µ2τ2 e−τ2
∫ 1
0 f6 (θ, ·) eθτ2dθ

Let’s define the following bilinear form:

B(U, W ) =

∫ l

0
u1xxw1xxdx+

∫ l

0
u3xw̃1xdx+ κ1

∫ l

0
u1w1dx+ κ2

∫ l

0
u3w̃1dx,

and the linear form

L(W ) = 〈F,W 〉 ,
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Where U = (u1, u3), W = (w1, w̃1) and F = (F2, F4 ). Let’s show that B(U, W ) and
L(W ) satisfy the conditions of Lax-Milgram theorem. By using Holder’s inequality, we
obtain that

B(U, W ) ≤ 2

∫ l

0
|u1xx|

2dx+ 2

∫ l

0
|w1xx|

2dx+ 2

∫ l

0
|u3x|

2dx+ 2

∫ l

0
|w̃1x|

2dx+

+2κ1

∫ l

0
|u1|

2dx+ 2κ1

∫ l

0
|w1|

2dx+2κ2

∫ l

0
|u3|

2dx+ 2κ2

∫ l

0
|w̃1|

2dx ≤ C·
(
‖U‖2 + ‖ W‖2

)

So, B(U, W ) is continuous.

In addition, there is such a positive constant C0 that the following inequality

B (U,U) =

∫ l

0
|u1xx|

2dx+

∫ l

0
|u3x|

2dx+ κ1

∫ l

0
|u1|

2dx+

+κ2

∫ l

0
|u3|

2dx ≥ C0‖U‖2

holds, i.e. B(U, W ) is coercive. These calculations show that B and L satisfy the condi-
tions of Lax-Milgram theorem.

A simple calculation shows that B and L satisfy the conditions of Lax-Milgram theorem.
So, there exists a unique U = (u1, u3 ) ∈ Ĥ2Ĥ1 satisfying

B(U, W ) = L(W ), ∀ W ∈ Ĥ2Ĥ1 (2.16)

Consequently, u2 = u1 − f1 ∈ Ĥ2, u4 = u3 − f3 ∈ Ĥ1and

z1 (·, ρ) , z2 (·, ρ) , z1ρ (·, ρ) , z2ρ (·, ρ) ∈ L2(0, l).

Using (2.11) and (2.12), we get z1 (·, ρ), z2 (·, ρ) ∈ L2((0, l) × (0, l)). Thus, (2.7) has a
unique solution ω = (u1, u2, u3, u4, z1, z2)

T ∈ H.

Lemma 2.3. The nonlinear operators A1(·) and FK(·) satisfy Lipschitz condition.

Proof. Since
∣∣[α]+ − [β]+

∣∣ ≤ |α− β| for any α, β, we get

‖A1(ω2) − A1(ω1)‖ H ≤ D(A0).

On the other side, by using the inequality

|g1(û, v̂)− g1(u, v)| ≤ c(u, û,v, v̂) [|û − u|+ |v̂ − v|]

we derive that

‖FiK(ω2) − F i(ω1)‖ H ≤ c(K) ‖ω2 − ω1‖ H.
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3. Proof of the thorem

According to the Lemma 1 and Lemma 2, for each K>0, the operator A0 +A1(·) +FK(·)
satisfies all conditions of Theorem 4.1 in [19] (see also [20]) . That’s why for any ω0 ∈
H, there is a unique solution ω(·)∈C( [0, +∞) , H ) of the problem (2.9). So that, if
ω0 ∈ D(A0) , then ω(, )∈C1( [0, +∞) , H )∩C( [0, +∞) , D(A0) ).
As A0 +A1(·) + FK(·) is maximal monotone operator, from (2.9) we obtain

‖ω(t)‖2H ≤ ‖ω0‖
2
He

2[ω+C(K)]t.

It follows that when ‖ω0‖H < K, the inequality ‖ω(t)‖2H < K2 holds true on the interval
0 ≤ t ≤ T ′ for T ′ = T (‖ω0‖H) = 1

ω+C(K)Ln
K

‖ω0‖H
. Thus, on the interval 0 ≤ t ≤ T ′ ,

FK (ω) = F (ω) is true, i.e., ω(t) is the solution of the problem (2.7) at the same interval.
As can be seen, if ‖ω(t)‖H ≤ c on the interval 0 ≤ t ≤ T ′, the solution can be continued
to the domain 0 ≤ t < +∞.
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